Optimization of smart Heusler alloys from first principles

[1]  P. Entel,et al.  Basic Properties of Magnetic Shape-Memory Materials from First-Principles Calculations , 2012, Metallurgical and Materials Transactions A.

[2]  M. Wuttig,et al.  Designing shape-memory Heusler alloys from first-principles , 2011 .

[3]  M. M. Raja,et al.  Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni50-xMn37+xSn13 Heusler alloys , 2011 .

[4]  P. Entel,et al.  Composition-Dependent Basics of Smart Heusler Materials from First- Principles Calculations , 2011 .

[5]  P. Entel,et al.  Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys , 2011 .

[6]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[7]  M. Shirai,et al.  Role of electronic structure in the martensitic phase transition of Ni2Mn(1+x)Sn(1-x) studied by hard-X-ray photoelectron spectroscopy and Ab initio calculation. , 2010, Physical review letters.

[8]  H. Ebert,et al.  First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1−xGa , 2010 .

[9]  M. Wuttig,et al.  Adaptive modulations of martensites. , 2009, Physical review letters.

[10]  H. Morito,et al.  Stress-assisted large magnetic-field-induced strain in single-variant Co–Ni–Ga ferromagnetic shape memory alloy , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  M. Acet,et al.  Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  C. Jenkins,et al.  Compositional dependence of element-specific magnetic moments in Ni2MnGa films , 2009 .

[13]  J. Neugebauer,et al.  Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. , 2009, Physical review letters.

[14]  P. Entel,et al.  Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb) , 2008 .

[15]  I. Karaman,et al.  DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa , 2008 .

[16]  P. Littlewood,et al.  Combined experimental and theoretical investigation of the premartensitic transition in Ni2MnGa. , 2008, Physical review letters.

[17]  X. Moya,et al.  Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys , 2007, 0711.4506.

[18]  G. Jakob,et al.  Correlation of electronic structure and martensitic transition in epitaxialNi2MnGafilms , 2007 .

[19]  X. Moya,et al.  Calorimetric study of the inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn , 2007 .

[20]  F. Albertini,et al.  Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases , 2007 .

[21]  X. Moya,et al.  Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape memory alloy , 2007, 0704.1241.

[22]  X. Moya,et al.  Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.

[23]  X. Moya,et al.  Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys , 2006 .

[24]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[25]  Peter Entel,et al.  Modelling the phase diagram of magnetic shape memory Heusler alloys , 2006 .

[26]  S. R. Barman,et al.  Structural and electronic properties ofNi2MnGa , 2005 .

[27]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[28]  K. Ishida,et al.  Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys , 2004 .

[29]  M. Wuttig,et al.  Transformation behavior and microstructures of PtNiMnGa ferromagnetic shape memory alloys , 2004 .

[30]  R. Nieminen,et al.  Ab initio study of tetragonal variants in Ni2MnGa alloy , 2002 .

[31]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[32]  K. Ziebeck,et al.  Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa , 1999 .

[33]  E. Vives,et al.  Modeling premartensitic effects in Ni 2 MnGa: A mean-field and Monte Carlo simulation study , 1999, cond-mat/9906163.

[34]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[37]  Shapiro,et al.  Adaptive phase formation in martensitic transformation. , 1991, Physical review. B, Condensed matter.

[38]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[39]  M. Acet,et al.  Magnetic-Field-Induced Effects in Martensitic Heusler-Based Magnetic Shape Memory Alloys , 2011 .