Tropical Implicitization and Mixed Fiber Polytopes

The software TrIm offers implementations of tropical implicitization and tropical elimination, as developed by Tevelev and the authors. Given a polynomial map with generic coefficients, TrIm computes the tropical variety of the image. When the image is a hypersurface, the output is the Newton polytope of the defining polynomial. TrIm can thus be used to compute mixed fiber polytopes, including secondary polytopes.

[1]  Stephen M. Watt,et al.  Numerical Implicitization of Parametric Hypersurfaces with Linear Algebra , 2000, AISC.

[2]  Debasish Dutta,et al.  Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, October 7-9, 2003 , 2005, Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing.

[3]  Peter Huggins iB4e: A Software Framework for Parametrizing Specialized LP Problems , 2006, ICMS.

[4]  Leonidas Palios,et al.  Computing the Newton Polytope of Specialized Resultants , 2007 .

[5]  Rekha R. Thomas,et al.  Computing tropical varieties , 2007, J. Symb. Comput..

[6]  Ilias S. Kotsireas,et al.  Implicitization Exploiting Sparseness , 2003, Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing.

[7]  Bernd Sturmfels,et al.  The Newton Polytope of the Implicit Equation , 2006, ArXiv.

[8]  Alicia Dickenstein,et al.  Tropical Discriminants , 2005, math/0510126.

[9]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[10]  J. McDonald Fractional Power Series Solutions for Systems of Equations , 2002, Discret. Comput. Geom..

[11]  B. Sturmfels,et al.  ELIMINATION THEORY FOR TROPICAL VARIETIES , 2007, 0704.3471.

[12]  Peter McMullen,et al.  Mixed Fibre Polytopes , 2004, Discret. Comput. Geom..

[13]  Ronald Cools,et al.  Decomposing the Secondary Cayley Polytope , 2000, Discret. Comput. Geom..

[14]  Alexander Esterov,et al.  Elimination theory and Newton polyhedra , 2006 .

[15]  James L. Elliot,et al.  Massachusetts Institute of Technology, Cambridge MA 02139 , 1985 .

[16]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[17]  Eecient Incremental Algorithms for the Sparse Resultant and the Mixed Volume , 1995 .

[18]  Peter McMullen,et al.  Regular Polytopes of Full Rank , 2004, Discret. Comput. Geom..