Estimation of ruin probabilities

Consider the compound Poisson claim size process generated by a distribution function B. Denote by W(t. x) the finite time non-ruin probability that the company will not be ruined before 1 starting with initial reserve x. Under appropriate conditions on B it is shown that W(t, χ)−W(∞, χ) is basically of the form exp{−θt−υχ}⋯t 32⋯χ for large t, where θ and υ are positive constants.

[1]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[2]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[3]  Jozef L. Teugels,et al.  Exponential ergodicity in Markov renewal processes , 1968, Journal of Applied Probability.

[4]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[5]  Julian Keilson Green's Function Methods in Probability Theory , 1965 .

[6]  J. Beekman Two stochastic processes , 1974 .

[7]  J. Teugels,et al.  The exponential rate of convergence of the distribution of the maximum of a random walk. Part II , 1975 .

[8]  On the rate of convergence of the maximum of a compound Poisson process , 1979 .

[9]  E. Seneta Regularly varying functions , 1976 .

[10]  Hans Bühlmann,et al.  Mathematical Methods in Risk Theory , 1970 .

[11]  P. Embrechts,et al.  Estimates for the probability of ruin with special emphasis on the possibility of large claims , 1982 .

[12]  Lajos Takács,et al.  Combinatorial Methods in the Theory of Stochastic Processes , 1967 .

[13]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[14]  Marcel F. Neuts,et al.  Exponential Ergodicity of the $M/G/1$ Queue , 1969 .

[15]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[16]  C. R. Heathcote,et al.  Complete exponential convergence and some related topics , 1967, Journal of Applied Probability.

[17]  Greg Taylor,et al.  Use of differential and integral inequalities to bound ruin and queuing probabilities , 1976 .