Parametric and Non-parametric Jacobian Motion Planning for Non-holonomic Robotic Systems
暂无分享,去创建一个
[2] Krzysztof Tchoń,et al. Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .
[3] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[4] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[5] T. Ważewski,et al. Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .
[6] John T. Wen,et al. Kinematic path planning for robots with holonomic and nonholonomic constraints , 1998 .
[7] H. Sussmann,et al. A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[8] J. Wen,et al. Nonlinear Model Predictive Control for the Swing-Up of a Rotary Inverted Pendulum , 2004 .
[9] Katarzyna Zadarnowska,et al. Kinematic dexterity of mobile manipulators: an endogenous configuration space approach , 2003, Robotica.
[10] Krzysztof Tchori,et al. Instantaneous kinematics and dexterity of mobile manipulators , 2000 .
[11] K. Tchoń,et al. Jacobian inverse kinematics algorithms with variable steplength for mobile manipulators , 2006, ARK.
[12] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[13] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[14] Krzysztof Tchon,et al. Constrained motion planning of nonholonomic systems , 2011, Syst. Control. Lett..
[15] Suguru Arimoto,et al. Bettering operation of Robots by learning , 1984, J. Field Robotics.
[16] Y. Chitour. A continuation method for motion-planning problems , 2006 .
[17] François Alouges,et al. A motion planning algorithm for the rolling-body problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[18] Krzysztof Tchon,et al. Iterative learning control and the singularity robust Jacobian inverse for mobile manipulators , 2010, Int. J. Control.
[19] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[20] Eduardo D. Sontag,et al. Mathematical control theory: deterministic systems , 1990 .
[21] John T. Wen,et al. A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..