Chapter 4 InP Crystal Growth, Substrate Preparation and Evaluation

Publisher Summary This chapter presents a study on indium phosphide (InP) crystal growth—substrate preparation and evaluation. InP is a III–V compound semiconductor, which is a very promising material for increasing applications in optoelectronic communications, optoelectronic integrated circuits (OEICs), high-speed devices, such as metal insulator–semiconductor field effect transistors (MISFDTs), and solar cells. InP has some superior physical properties compared with other III–V compounds, the demand and application are being extended year by year. This extension was apparent after 1981 when optical fiber communication was made practical by the use of InP substrates. InP is a direct-transition-type compound semiconductor. The fundamental physical properties of InP are described in the chapter. To synthesize InP polycrystalline material, high-pressure horizontal Bridgman technique, high-pressure gradient freezing technique, synthesis by the solute diffusion technique (SSD technique), and direct synthesis in a high-pressure puller are performed. Photoluminescence is an effective technique for the evaluation of the purity of InP.

[1]  T. Fukuda,et al.  Growth and Resistivity Characteristics of Undoped Semi-Insulating GaAs Crystals with Low Dislocation Density , 1984 .

[2]  A. Yamamoto,et al.  Growth of Dislocation-Free Undoped InP Crystals , 1980 .

[3]  E. Buehler,et al.  Liquid encapsulated czochralski pulling of InP crystals , 1975 .

[4]  R. Brunton,et al.  Large scale synthesis and growth of polycrystalline InP , 1988 .

[5]  Akio Yamamoto,et al.  Radiation damage in InP single crystals and solar cells , 1984 .

[6]  G. Iseler,et al.  Titanium‐doped semi‐insulating InP grown by the liquid encapsulated Czochralski method , 1986 .

[7]  D. Brinker,et al.  Indium phosphide solar cells: status and prospects for use in space , 1986 .

[8]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[9]  Kentaro Onabe,et al.  Calculation of Miscibility Gap in Quaternary InGaPAs with Strictly Regular Solution Approximation , 1982 .

[10]  M. Gauneau,et al.  Growth of low-dislocation semi-insulating InP(Fe, Ga) , 1987 .

[11]  Guy Michel Jacob,et al.  Formation of dislocations during liquid encapsulated Czochralski growth of GaAs single crystals , 1982 .

[12]  M. Yamaguchi,et al.  Electron Irradiation Damage in Radiation-Resistant InP Solar Cells , 1984 .

[13]  J. Stockbridge,et al.  The preparation and assessment of indium phosphide , 1983 .

[14]  M. Gauneau,et al.  Synthesis, crystal growth and characterization of InP , 1983 .

[15]  J. Adamski High purity polycrystalline InP , 1982 .

[16]  W. Walukiewicz,et al.  Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio , 1979 .

[17]  J. Hirth,et al.  Mechanism for dislocation density reduction in GaAs crystals by indium addition , 1985 .

[18]  C. Uemura,et al.  Isoelectronic Double Doping Effect on Dislocation Density of InP Single Crystal , 1984 .

[19]  L. F. Donaghey CHAPTER 3 – Hydrodynamics of Crystal Growth Processes , 1980 .

[20]  H. Gottschalk,et al.  Stacking fault energy and ionicity of cubic III–V compounds , 1978 .

[21]  W. Bonner InP synthesis and LEC growth of twin-free crystals , 1981 .

[22]  K. Gillessen,et al.  Optimization of growth conditions in the synthesis, solute diffusion growth of GaP , 1976 .

[23]  A. S. Jordan,et al.  An analysis of dislocation reduction by impurity hardening in the liquid‐encapsulated Czochralski growth of 〈111〉 InP , 1985 .

[24]  G. T. Brown,et al.  The growth of dislocation-free Ge-DOPED InP , 1981 .

[25]  R. Henry,et al.  Precipitates in Fe-doped InP , 1977 .

[26]  B. Tuck The chemical polishing of semiconductors , 1975 .

[27]  K. Sugii,et al.  Large-sized InP single crystals by the synthesis, solute diffusion technique , 1979 .

[28]  J. Takahashi,et al.  Photoluminescence Study of Undoped, Sn-Doped and S-Doped InP Single Crystals , 1987 .

[29]  G. Salviati,et al.  Inclusion-like defects in Czochralski grown InP single crystals , 1984 .

[30]  S. Chu,et al.  The Growth and Characterization of Large Size, High Quality, InP Single Crystals , 1988 .

[31]  A. S. Jordan An evaluation of the thermal and elastic constants affecting GaAs crystal growth , 1980 .

[32]  G. Rees Semi-Insulating III–V Materials , 1980 .

[33]  György Szabó,et al.  Thermal strain during Czochralski growth , 1985 .

[34]  J. Matsui,et al.  Impurity effect on grown‐in dislocation density of InP and GaAs crystals , 1978 .

[35]  S. Noh,et al.  Characteristics of a Semi-Insulating InP:Fe Wafer , 1986 .

[36]  P. Roksnoer,et al.  The single crystal growth and characterization of indium phosphide , 1984 .

[37]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[38]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[39]  H. Gatos,et al.  New semi‐insulating InP: Titanium midgap donors , 1986 .

[40]  T. Fukuda,et al.  Growth and properties of InP single crystals grown by the magnetic field applied LEC method , 1986 .

[41]  J. C. Regnault,et al.  A detailed microscopic examination of dislocation clusters in LEC InP , 1984 .

[42]  K. Gillessen,et al.  Growth of InP crystals by the synthesis, solute diffusion method , 1978 .

[43]  C. P. Chen Minimum Silicon Wafer Thickness for ID Wafering , 1982 .

[44]  L. Nielsen Microwave measurement of electron drift velocity in indium phosphide for electric fields up to 50 kV/cm , 1972 .

[45]  P. J. Dean,et al.  Residual donors in LEC indium phosphide , 1984 .

[46]  M. Manfra,et al.  Hydroplane polishing of semiconductor crystals , 1981 .

[47]  J. Adamski Synthesis of indium phosphide , 1976 .

[48]  K. Gillessen,et al.  Growth of GaP single crystals by the synthesis, solute diffusion method , 1976 .

[49]  A. S. Jordan,et al.  A thermoelastic analysis of dislocation generation in pulled GaAs crystals , 1980, The Bell System Technical Journal.

[50]  K. Hoshikawa,et al.  Crystal growth of completely dislocation-free and striation-free GaAs , 1985 .

[51]  G. T. Brown,et al.  A systematic study of the electrical properties of Fe-doped InP single crystals , 1981 .

[52]  A. Glass,et al.  Double doped low etch pit density InP with reduced optical absorption , 1983 .

[53]  K. Sugii,et al.  Growth of InP single crystals by growth-rate controlled synthesis, solute diffusion technique , 1984 .

[54]  S. Tohno,et al.  Growth and characterization of isoelectronically double-doped semi-insulating InP(Fe) single crystals , 1986 .

[55]  B. Tuck Review The chemical polishing of semiconductors , 1975 .

[56]  A. S. Jordan Some thermal and mechanical properties of InP essential to crystal growth modeling , 1985 .

[57]  D. Stirland,et al.  A Study of Inclusions in Indium Phosphide , 1982 .

[58]  J. Farges A method for the “in-situ” synthesis and growth of indium phosphide in a Czochralski puller , 1982 .

[59]  W. Bonner,et al.  Effect of temperature and sulfur doping on the plastic deformation of InP single crystals , 1983 .

[60]  C. Zeisse,et al.  Electron and iron concentration in semi-insulating indium phosphide , 1983 .

[61]  R. Chen,et al.  Dislocation studies in 3-inch diameter liquid encapsulated Czochralski GaAs , 1983 .

[62]  I. Saunders Crystal growth '78 , 1979 .

[63]  T. Iwaki,et al.  A thermoelastic analysis of the thermal stress produced in a semi-infinite cylindrical single crystal during the Czochralski growth , 1985 .

[64]  B. Cockayne,et al.  Dislocation-free LEC growth of InP doped with Ge and S , 1986 .

[65]  G. Hollinger,et al.  Chemical cleaning of InP surfaces: Oxide composition and electrical properties , 1984 .

[66]  S. Tohno,et al.  Single crystal growth and characterization of isoelectronically-doped InP , 1986 .

[67]  B. Dam,et al.  The growth spiral morphology on {100} KDP related to impurity effects and step kinetics , 1986 .

[68]  A. S. Jordan,et al.  A comparative study of thermal stress induced dislocation generation in pulled GaAs, InP, and Si crystals , 1981 .

[69]  A. S. Jordan,et al.  The theoretical and experimental fundamentals of decreasing dislocations in melt grown GaAs and InP , 1986 .

[70]  G. T. Brown,et al.  The growth and perfection of single crystal indium phosphide produced by the LEC technique , 1981 .

[71]  T. Fujii,et al.  Technique for the direct synthesis and growth of indium phosphide by the liquid phosphorus encapsulated Czochralski method , 1987 .

[72]  T. Nishinaga,et al.  Doping Effect of Oxygen on Horizontal Bridgman Grown InP , 1981 .

[73]  M. Whittaker,et al.  The Growth and Properties of Large Semi-Insulating Crystals of Indium Phosphide , 1980 .

[74]  G. Jacob,et al.  Propriétés électriques des lingots d'arséniure de gallium , 1983 .

[75]  W. Bonner,et al.  Analysis of InP Surface Prepared by Various Cleaning Methods , 1982 .

[76]  J. Matsui,et al.  Impurity effect on the growth of dislocation‐free InP single crystals , 1976 .

[77]  K. Sugii,et al.  Preparation of high‐purity InP by the synthesis, solute diffusion technique , 1981 .

[78]  A. S. Jordan,et al.  The role of crystal diameter and impurity hardening on the threshold for dislocation formation in LEC GaAs , 1986 .

[79]  A. A. Studna,et al.  Chemical etching and cleaning procedures for Si, Ge, and some III‐V compound semiconductors , 1981 .

[80]  J. Mullin,et al.  Eutectic formation in chromium-doped indium phosphide , 1974 .

[81]  P. Rappaport,et al.  Effect of Temperature on Photovoltaic Solar Energy Conversion , 1960 .

[82]  T. Inoue,et al.  Annealing Conditions for Fe Doped Semi-Insulating InP , 1989, Other Conferences.

[83]  K. Kaneko,et al.  A new method of growing GaP crystals for light-emitting diodes , 1973 .

[84]  S. Miyazawa,et al.  Eutectic Precipitates in Fe‐Doped InP , 1982 .

[85]  S. E. Forman,et al.  Vibration Characteristics of Crystal Slicing ID Saw Blades , 1972 .

[86]  A. S. Jordan,et al.  The theory and practice of dislocation reduction in GaAs and InP , 1984 .

[87]  A. A. Studna,et al.  Summary Abstract: Preparation of high‐quality surfaces on semiconductors by selective chemical etching , 1982 .