Explicitly self-similar solutions for the Euler/Navier-Stokes-Korteweg equations in RN
暂无分享,去创建一个
Yang Chen | Manwai Yuen | Engui Fan | Yang Chen | E. Fan | Manwai Yuen | E. Fan
[1] T. Simula. Vortices , 2019, Quantised Vortices.
[2] Yan Xu,et al. A local discontinuous Galerkin method for the (non)-isothermal Navier-Stokes-Korteweg equations , 2015, J. Comput. Phys..
[3] E. Fan,et al. The Cartesian Vector Solutions for the N‐Dimensional Compressible Euler Equations , 2015 .
[4] Pascal Noble,et al. Stability Theory for Difference Approximations of Euler-Korteweg Equations and Application to Thin Film Flows , 2013, SIAM J. Numer. Anal..
[5] Huijiang Zhao,et al. Existence and nonlinear stability of stationary solutions to the full compressible Navier–Stokes–Korteweg system , 2014 .
[6] Charalambos Makridakis,et al. Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system , 2012, Math. Comput..
[7] Hongli An,et al. Supplement to "Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in RN" [Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4524-4528] , 2013, Commun. Nonlinear Sci. Numer. Simul..
[8] I. F. Barna,et al. Analytic solutions for the one-dimensional compressible Euler equation with heat conduction closed with different kind of equation of states , 2012, 1209.0607.
[9] Corentin Audiard,et al. Dispersive Smoothing for the Euler-Korteweg Model , 2012, SIAM J. Math. Anal..
[10] Zhenhua Guo,et al. Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries , 2012 .
[11] Jean-Claude Saut,et al. Madelung, Gross–Pitaevskii and Korteweg , 2011, 1111.4670.
[12] Manwai Yuen,et al. Self-Similar Solutions with Elliptic Symmetry for the Compressible Euler and Navier-Stokes Equations in R N , 2011, 1104.3687.
[13] J. Höwing. Stability of large- and small-amplitude solitary waves in the generalized Korteweg–de Vries and Euler–Korteweg/Boussinesq equations , 2011 .
[14] I. F. Barna,et al. Self-Similar Solutions of Three-Dimensional Navier—Stokes Equation , 2011, 1102.5504.
[15] C. Audiard. Kreiss symmetrizer and boundary conditions for the Euler–Korteweg system in a half space , 2010 .
[16] S. Lou,et al. Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1) -dimensional Euler equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Christian Rohde,et al. On local and non‐local Navier‐Stokes‐Korteweg systems for liquid‐vapour phase transitions , 2005 .
[18] D. Hoff,et al. Symmetric Nonbarotropic Flows with Large Data and Forces , 2004 .
[19] Hi Jun Choe,et al. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids , 2003 .
[20] Jiequan Li. Global Solution of an Initial-Value Problem for Two-Dimensional Compressible Euler Equations , 2002 .
[21] E. Feireisl,et al. On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .
[22] Changjiang Zhu,et al. COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY AND VACUUM , 2001 .
[23] Y. Charles Li,et al. Lax Pairs and Darboux Transformations for Euler Equations , 2001, math/0101214.
[24] Song Jiang,et al. On Spherically Symmetric Solutions¶of the Compressible Isentropic Navier–Stokes Equations , 2001 .
[25] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[26] Andrew P. Bassom,et al. Similarity Reductions and Exact Solutions for the Two‐Dimensional Incompressible Navier–Stokes Equations , 1999 .
[27] Tong Zhang,et al. Axisymmetric Solutions of the Euler Equations for Polytropic Gases , 1998 .
[28] Zhouping Xin,et al. Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .
[29] Tong Zhang,et al. Exact spiral solutions of the two-dimensional Euler equations , 1996 .
[30] Gui-Qiang G. Chen,et al. Global solutions to the compressible Euler equations with geometrical structure , 1996 .