On the use of graphs in discrete tomography

In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied to derive some of these results.

[1]  G. Herman,et al.  Discrete tomography : foundations, algorithms, and applications , 1999 .

[2]  Anass Nagih,et al.  A MIP flow model for crop-rotation planning in a context of forest sustainable development , 2011, Ann. Oper. Res..

[3]  Akira Kaneko,et al.  Reconstruction Algorithm and Switching Graph for Two-Projection Tomography with Prohibited Subregion , 2006, DGCI.

[4]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[5]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[6]  Attila Kuba,et al.  Discrete Tomography: A Historical Overview , 1999 .

[7]  Martín Matamala,et al.  Reconstructing 3-Colored Grids from Horizontal and Vertical Projections Is NP-hard , 2009, ESA.

[8]  Erik Knudsen,et al.  Discrete Tomography for Generating Grain Maps of Polycrystals , 2007 .

[9]  Attila Kuba,et al.  Discrete Tomography Methods for Nondestructive Testing , 2007 .

[10]  Marek Chrobak,et al.  Reconstructing polyatomic structures from discrete X-rays: NP-completeness proof for three atoms , 2001, Theor. Comput. Sci..

[11]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[12]  Roberto Martinis,et al.  Tomographie ultrasonore pour les arbres sur pied , 2004 .

[13]  N. Deo,et al.  Techniques for analyzing dynamic random graph models of web‐like networks: An overview , 2008, Networks.

[14]  Dominique de Werra,et al.  Degree-constrained edge partitioning in graphs arising from discrete tomography , 2009, J. Graph Algorithms Appl..

[15]  Andrea Frosini,et al.  Reconstruction of binary matrices under fixed size neighborhood constraints , 2008, Theor. Comput. Sci..

[16]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[17]  Dominique de Werra,et al.  On the use of graphs in discrete tomography , 2008, 4OR.

[18]  Kees Joost Batenburg,et al.  Network Flow Algorithms for Discrete Tomography , 2007 .

[19]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[20]  Dominique de Werra,et al.  Using graphs for some discrete tomography problems , 2006, Discret. Appl. Math..

[21]  G. Herman,et al.  Advances in discrete tomography and its applications , 2007 .

[22]  Dominique de Werra,et al.  A solvable case of image reconstruction in discrete tomography , 2005, Discret. Appl. Math..

[23]  D. de Werra,et al.  Nesticity, DIMACS series , 1997 .