A Parallelized Method for Direct Numerical Simulations of Rigid Particles in Multiphase Flow

The here described new technique allows to simulate rigid bodies in the multiphase code Free Surface 3D (FS3D). The scheme is formulated in an Eulerian framework. Multiple rigid bodies may be considered that are identified by a single Volume-of-Fluid (VOF) variable. Collisions between particles are treated with the exact solution of the excentrical, frictionless collision problem of two arbitrarily shaped particles. The phenomena of drafting, kissing and tumbling are identified when two solid spheres interact in a Newtonian fluid. This case provides a basis for a performance analysis on massively parallel architectures.

[1]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[2]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[3]  Krishnaswamy Nandakumar,et al.  A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version , 2007, J. Comput. Phys..

[4]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[5]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[6]  D. Joseph,et al.  Nonlinear mechanics of fluidization of beds of spherical particles , 1987, Journal of Fluid Mechanics.

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[8]  Peter J. Mucha,et al.  A new method for simulating rigid body motion in incompressible two‐phase flow , 2011 .

[9]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[10]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[11]  Theodor Lehmann Elemente der Mechanik III: Kinetik , 1983 .

[12]  R. Glowinski,et al.  A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows , 2000 .

[13]  N. Patankar,et al.  A fast computation technique for the direct numerical simulation of rigid particulate flows , 2005 .

[14]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[15]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[16]  C. Diaz-Goano,et al.  A fictitious domain/finite element method for particulate flows , 2003 .

[17]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[18]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[19]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[20]  Zhaosheng Yu,et al.  A direct-forcing fictitious domain method for particulate flows , 2007, J. Comput. Phys..

[21]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[22]  Frédéric Gibou,et al.  Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions , 2012, J. Comput. Phys..

[23]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[24]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[25]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[26]  H. Yoon,et al.  Simulation of two‐phase flow–body interaction problems using direct forcing/fictitious domain–level set method , 2013 .

[27]  S. Jakirlic,et al.  Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water , 2013 .

[28]  G. Turk,et al.  Rigid, melting, and flowing fluid , 2004 .