The formal ball model for -categories
暂无分享,去创建一个
[1] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[2] Jimmie D. Lawson. Computation on metric spaces via domain theory , 1998 .
[3] G. M. Kelly,et al. ON THE MONADICITY OF CATEGORIES WITH CHOSEN COLIMITS , 2000 .
[4] Óscar Valero,et al. A quantitative computational model for complete partial metric spaces via formal balls† , 2009, Mathematical Structures in Computer Science.
[5] Abbas Edalat. Domain Theory and Integration , 1995, Theor. Comput. Sci..
[6] Steven Vickers,et al. Localic completion of generalized metric spaces I , 2005 .
[7] Marcello M. Bonsangue,et al. Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..
[8] B. Honari,et al. The space of formal balls and models of quasi-metric spaces , 2009, Math. Struct. Comput. Sci..
[9] Dirk Hofmann,et al. Relative injectivity as cocompleteness for a class of distributors , 2008 .
[10] Dirk Hofmann,et al. Topological theories and closed objects , 2007 .
[11] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[12] Klaus Keimel,et al. Continuous Lattices and Domains: The Scott Topology , 2003 .
[13] Óscar Valero,et al. Domain theoretic characterisations of quasi-metric completeness in terms of formal balls† , 2010, Mathematical Structures in Computer Science.
[14] G. M. Kelly,et al. Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.
[15] Patricia Bouyer,et al. Undecidability Results for Timed Automata with Silent Transitions , 2009, Fundam. Informaticae.
[16] Michael H. Albert,et al. The closure of a class of colimits , 1988 .
[17] Qi-Ye Zhang,et al. Continuity in quantitative domains , 2005, Fuzzy Sets Syst..
[18] R. Flagg,et al. Quantales and continuity spaces , 1997 .
[19] Pawel Waszkiewicz. On Domain Theory over Girard Quantales , 2009, Fundam. Informaticae.
[20] Ralph Kopperman,et al. Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..
[21] Jimmie D. Lawson,et al. Metric spaces and FS-domains , 2008, Theor. Comput. Sci..
[22] Dirk Hofmann,et al. Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..
[23] Pawel Waszkiewicz,et al. The limit–colimit coincidence theorem for -categories , 2010, Mathematical Structures in Computer Science.
[24] Abbas Edalat,et al. Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..
[25] Abbas Edalat,et al. Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.
[26] J. J. M. M. Rutten. Weighted colimits and formal balls in generalized metric spaces , 1997 .
[27] Abbas Edalat,et al. Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..
[28] Vincent Schmitt,et al. Flatness, preorders and general metric spaces , 2003, math/0309209.
[29] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[30] Dexue Zhang,et al. Complete and directed complete Omega-categories , 2007, Theor. Comput. Sci..
[31] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[32] Jimmie D. Lawson,et al. Spaces of maximal points , 1997, Mathematical Structures in Computer Science.
[33] Kim R. Wagner,et al. Solving Recursive Domain Equations with Enriched Categories. , 1994 .
[34] Abbas Edalat,et al. A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..
[35] Hans-Peter A. Künzi,et al. On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..
[36] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[37] Xueliang Li,et al. On the minimum monochromatic or multicolored subgraph partition problems , 2007, Theor. Comput. Sci..
[38] Walter Tholen,et al. Metric, topology and multicategory—a common approach , 2003 .
[39] Pierre America,et al. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..
[40] Dirk Hofmann,et al. Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..
[41] Ralph Kopperman,et al. Fixed points and reflexive domain equations in categories of continuity spaces , 1995, MFPS.
[42] Dexue Zhang,et al. Fundamental study: Complete and directed complete Ω-categories , 2007 .
[43] A. Kock. Monads for which Structures are Adjoint to Units , 1995 .
[44] Jan J. M. M. Rutten,et al. Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..