The formal ball model for -categories

We generalise the construction of the formal ball model for metric spaces due to A. Edalat and R. Heckmann in order to obtain computational models for separated -categories. We fully describe -categories that are (a) Yoneda complete (b) continuous Yoneda complete via their formal ball models. Our results yield solutions to two open problems in the theory of quasi-metric spaces by showing that: (a) a quasi-metric space X is Yoneda complete if and only if its formal ball model is a dcpo, and (b) a quasi-metric space X is continuous and Yoneda complete if and only if its formal ball model BX is a domain that admits a simple characterisation of approximation.

[1]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[2]  Jimmie D. Lawson Computation on metric spaces via domain theory , 1998 .

[3]  G. M. Kelly,et al.  ON THE MONADICITY OF CATEGORIES WITH CHOSEN COLIMITS , 2000 .

[4]  Óscar Valero,et al.  A quantitative computational model for complete partial metric spaces via formal balls† , 2009, Mathematical Structures in Computer Science.

[5]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[6]  Steven Vickers,et al.  Localic completion of generalized metric spaces I , 2005 .

[7]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[8]  B. Honari,et al.  The space of formal balls and models of quasi-metric spaces , 2009, Math. Struct. Comput. Sci..

[9]  Dirk Hofmann,et al.  Relative injectivity as cocompleteness for a class of distributors , 2008 .

[10]  Dirk Hofmann,et al.  Topological theories and closed objects , 2007 .

[11]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[12]  Klaus Keimel,et al.  Continuous Lattices and Domains: The Scott Topology , 2003 .

[13]  Óscar Valero,et al.  Domain theoretic characterisations of quasi-metric completeness in terms of formal balls† , 2010, Mathematical Structures in Computer Science.

[14]  G. M. Kelly,et al.  Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.

[15]  Patricia Bouyer,et al.  Undecidability Results for Timed Automata with Silent Transitions , 2009, Fundam. Informaticae.

[16]  Michael H. Albert,et al.  The closure of a class of colimits , 1988 .

[17]  Qi-Ye Zhang,et al.  Continuity in quantitative domains , 2005, Fuzzy Sets Syst..

[18]  R. Flagg,et al.  Quantales and continuity spaces , 1997 .

[19]  Pawel Waszkiewicz On Domain Theory over Girard Quantales , 2009, Fundam. Informaticae.

[20]  Ralph Kopperman,et al.  Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..

[21]  Jimmie D. Lawson,et al.  Metric spaces and FS-domains , 2008, Theor. Comput. Sci..

[22]  Dirk Hofmann,et al.  Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..

[23]  Pawel Waszkiewicz,et al.  The limit–colimit coincidence theorem for -categories , 2010, Mathematical Structures in Computer Science.

[24]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..

[25]  Abbas Edalat,et al.  Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.

[26]  J. J. M. M. Rutten Weighted colimits and formal balls in generalized metric spaces , 1997 .

[27]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[28]  Vincent Schmitt,et al.  Flatness, preorders and general metric spaces , 2003, math/0309209.

[29]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[30]  Dexue Zhang,et al.  Complete and directed complete Omega-categories , 2007, Theor. Comput. Sci..

[31]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[32]  Jimmie D. Lawson,et al.  Spaces of maximal points , 1997, Mathematical Structures in Computer Science.

[33]  Kim R. Wagner,et al.  Solving Recursive Domain Equations with Enriched Categories. , 1994 .

[34]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[35]  Hans-Peter A. Künzi,et al.  On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..

[36]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[37]  Xueliang Li,et al.  On the minimum monochromatic or multicolored subgraph partition problems , 2007, Theor. Comput. Sci..

[38]  Walter Tholen,et al.  Metric, topology and multicategory—a common approach , 2003 .

[39]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[40]  Dirk Hofmann,et al.  Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..

[41]  Ralph Kopperman,et al.  Fixed points and reflexive domain equations in categories of continuity spaces , 1995, MFPS.

[42]  Dexue Zhang,et al.  Fundamental study: Complete and directed complete Ω-categories , 2007 .

[43]  A. Kock Monads for which Structures are Adjoint to Units , 1995 .

[44]  Jan J. M. M. Rutten,et al.  Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..