Martensitic transformation and superelasticity in Au7Cu5Al4 shape memory alloy microwires
暂无分享,去创建一个
Shungui Zuo | M. Jin | G. Pang | X. Jin
[1] H. Karaca,et al. Superelasticity of [001]-oriented Fe42·6Ni27.9Co17·2Al9.9Nb2.4 ferrous shape memory alloys , 2016 .
[2] Peter G. Martin,et al. Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process , 2016 .
[3] A. Ludwig,et al. New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability , 2015 .
[4] D. J. Carter,et al. Determination of martensite structures of the Au7Cu5Al4 and Au7Cu5.7Al3.3 shape-memory alloys , 2014 .
[5] I. Karaman,et al. Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high-temperature shape memory alloy , 2014 .
[6] Zhi-Quan Liu,et al. Origin of tweed in Au–Cu–Al alloys , 2014 .
[7] Yoshikazu Araki,et al. Abnormal Grain Growth Induced by Cyclic Heat Treatment , 2013, Science.
[8] R. Kainuma,et al. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire , 2013 .
[9] H. Karaca,et al. Shape memory behavior of high strength NiTiHfPd polycrystalline alloys , 2013 .
[10] Stian M. Ueland,et al. Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys , 2013 .
[11] K. Ishida,et al. Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets , 2013 .
[12] Stian M. Ueland,et al. Oligocrystalline Shape Memory Alloys , 2012 .
[13] Yafei Zhang,et al. Strain glassy behavior and premartensitic transition in Au(7)Cu(5)Al(4) alloy , 2011 .
[14] M. Avdeev,et al. High temperature transformations of the Au7Cu5Al4 shape-memory alloy , 2011 .
[15] M. Cortie,et al. Ternary β and γ phases in the Al–Au–Cu system at 750 °C , 2009 .
[16] T. Nam,et al. Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi , 2008 .
[17] Shing‐Jong Lin,et al. Electrochemical and SEM Characterization of Gold-Coated Stents In Vitro , 2007 .
[18] L. Battezzati,et al. A shape memory gold alloy processed by rapid solidification , 2007 .
[19] G. Eggeler,et al. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .
[20] M. Cortie,et al. Hardness and colour trends along the 76 wt.% Au (18.2 carat) line of the Au–Cu–Al system , 2002 .
[21] M. Cortie,et al. Body-centred tetragonal martensite formed from Au7Cu5Al4 β phase , 2001 .
[22] M. Cortie,et al. Displacive transformations in Au-18 wt pct Cu-6 wt pct Al , 2000 .
[23] M. Cortie,et al. Structure and ordering of the 18-carat Al–Au–Cu β-phase , 2000 .
[24] A. Isalgué,et al. Interaction of single variant martensitic transformation with small γ type precipitates in CuZnAl , 1994 .
[25] Ji Ma,et al. Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging , 2018 .
[26] M. Cortie,et al. A 500 °C isothermal section for the Al-Au-Cu system , 2002 .
[27] M. Cortie,et al. Formation, modulation and adaptive twinning of martensite in the Au7Cu5Al4 shape memory system , 2002 .