Martensitic transformation and superelasticity in Au7Cu5Al4 shape memory alloy microwires

[1]  H. Karaca,et al.  Superelasticity of [001]-oriented Fe42·6Ni27.9Co17·2Al9.9Nb2.4 ferrous shape memory alloys , 2016 .

[2]  Peter G. Martin,et al.  Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process , 2016 .

[3]  A. Ludwig,et al.  New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability , 2015 .

[4]  D. J. Carter,et al.  Determination of martensite structures of the Au7Cu5Al4 and Au7Cu5.7Al3.3 shape-memory alloys , 2014 .

[5]  I. Karaman,et al.  Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high-temperature shape memory alloy , 2014 .

[6]  Zhi-Quan Liu,et al.  Origin of tweed in Au–Cu–Al alloys , 2014 .

[7]  Yoshikazu Araki,et al.  Abnormal Grain Growth Induced by Cyclic Heat Treatment , 2013, Science.

[8]  R. Kainuma,et al.  Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire , 2013 .

[9]  H. Karaca,et al.  Shape memory behavior of high strength NiTiHfPd polycrystalline alloys , 2013 .

[10]  Stian M. Ueland,et al.  Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys , 2013 .

[11]  K. Ishida,et al.  Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets , 2013 .

[12]  Stian M. Ueland,et al.  Oligocrystalline Shape Memory Alloys , 2012 .

[13]  Yafei Zhang,et al.  Strain glassy behavior and premartensitic transition in Au(7)Cu(5)Al(4) alloy , 2011 .

[14]  M. Avdeev,et al.  High temperature transformations of the Au7Cu5Al4 shape-memory alloy , 2011 .

[15]  M. Cortie,et al.  Ternary β and γ phases in the Al–Au–Cu system at 750 °C , 2009 .

[16]  T. Nam,et al.  Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi , 2008 .

[17]  Shing‐Jong Lin,et al.  Electrochemical and SEM Characterization of Gold-Coated Stents In Vitro , 2007 .

[18]  L. Battezzati,et al.  A shape memory gold alloy processed by rapid solidification , 2007 .

[19]  G. Eggeler,et al.  Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .

[20]  M. Cortie,et al.  Hardness and colour trends along the 76 wt.% Au (18.2 carat) line of the Au–Cu–Al system , 2002 .

[21]  M. Cortie,et al.  Body-centred tetragonal martensite formed from Au7Cu5Al4 β phase , 2001 .

[22]  M. Cortie,et al.  Displacive transformations in Au-18 wt pct Cu-6 wt pct Al , 2000 .

[23]  M. Cortie,et al.  Structure and ordering of the 18-carat Al–Au–Cu β-phase , 2000 .

[24]  A. Isalgué,et al.  Interaction of single variant martensitic transformation with small γ type precipitates in CuZnAl , 1994 .

[25]  Ji Ma,et al.  Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging , 2018 .

[26]  M. Cortie,et al.  A 500 °C isothermal section for the Al-Au-Cu system , 2002 .

[27]  M. Cortie,et al.  Formation, modulation and adaptive twinning of martensite in the Au7Cu5Al4 shape memory system , 2002 .