Robust multi-image based blind face hallucination

This paper proposes a robust multi-image based blind face hallucination framework to super-resolve LR faces. The proposed framework first estimates both blurring kernel and transformations of multiple LR faces by robust deblurring and registration in PCA subspace. A patch-wise mixture of probabilistic PCA prior is then incorporated for face super-resolution. Previous work on face SR using PCA prior can be viewed as special cases of the framework. Experimental results in both simulated and real LR sequences demonstrate very promising performance of the proposed method.

[1]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[2]  Chih-Yuan Yang,et al.  Structured Face Hallucination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[4]  Ce Liu,et al.  A Bayesian Approach to Alignment-Based Image Hallucination , 2012, ECCV.

[5]  Harry Shum,et al.  Face Hallucination: Theory and Practice , 2007, International Journal of Computer Vision.

[6]  Klaus J. Kirchberg,et al.  Robust Face Detection Using the Hausdorff Distance , 2001, AVBPA.

[7]  Dahua Lin,et al.  Hallucinating faces: TensorPatch super-resolution and coupled residue compensation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Deqing Sun,et al.  A Bayesian approach to adaptive video super resolution , 2011, CVPR 2011.

[9]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[10]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[11]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Andrew Zisserman,et al.  Super-resolution from multiple views using learnt image models , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[13]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[14]  G. Cristóbal,et al.  Simultaneous super-resolution and blind deconvolution , 2008 .

[15]  Takeo Kanade,et al.  The Asymmetry of Image Registration and Its Application to Face Tracking , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Stephen J. Roberts,et al.  Optimizing and Learning for Super-resolution , 2006, BMVC.

[17]  Xiaogang Wang,et al.  Hallucinating face by eigentransformation , 2005, IEEE Trans. Syst. Man Cybern. Part C.

[18]  Yücel Altunbasak,et al.  Eigenface-domain super-resolution for face recognition , 2003, IEEE Trans. Image Process..

[19]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  David Cox,et al.  Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook , 2011, CVPR 2011 WORKSHOPS.

[21]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[22]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Yu Hu,et al.  From Local Pixel Structure to Global Image Super-Resolution: A New Face Hallucination Framework , 2011, IEEE Transactions on Image Processing.

[24]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[25]  Michael E. Tipping,et al.  Mixtures of Principal Component Analysers , 1997 .

[26]  Thomas Pock,et al.  A Convex Approach for Image Hallucination , 2013, ArXiv.

[27]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[28]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[30]  Shaogang Gong,et al.  Generalized Face Super-Resolution , 2008, IEEE Transactions on Image Processing.

[31]  Bernhard Schölkopf,et al.  Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM , 2010, 2010 IEEE International Conference on Image Processing.