Stress-level dependency of creep ageing behavior for the nugget zone in a friction stir welded Al–Cu–Li alloy

[1]  J. Zhong,et al.  Stress-level dependency of creep ageing behavior for friction stir welded Al-Cu alloy , 2022, Journal of Central South University.

[2]  J. Zhong,et al.  Effect of pre-aging on creep aging properties and microstructure evolution of 2195 Al-Li alloy , 2022, Journal of Materials Research and Technology.

[3]  D. Yan,et al.  Creep behavior and microstructure evolution during two-stage creep aging of a 2195 Al–Li alloy , 2022, Materials Science and Engineering: A.

[4]  Minghui Huang,et al.  Dislocation reconfiguration during creep deformation of an Al-Cu-Li alloy via electropulsing , 2022, Journal of Materials Science & Technology.

[5]  T. Hu,et al.  Creep-aging behaviors of Al-Cu-Li alloy with different grain sizes , 2022, Journal of Alloys and Compounds.

[6]  Minghui Huang,et al.  Strong in-plane anisotropy of creep ageing behavior in largely pre-deformed Al-Cu alloy: experiments and constitutive modeling , 2022, International Journal of Plasticity.

[7]  L. Zhou,et al.  Microstructure characterization and evaluation of mechanical properties in 2A97 aluminum-lithium alloys welded by stationary shoulder friction stir welding , 2021, Journal of Materials Research and Technology.

[8]  D. Yan,et al.  Mechanism of an acceleration in T1 precipitation kinetics in an Al-Cu-Li alloy by electropulsing , 2021 .

[9]  L. Zhan,et al.  Creep aging properties variation and microstructure evolution for 2195 Al–Li alloys with various loading rates , 2021, Materials Science and Engineering: A.

[10]  L. Zhan,et al.  Study of desirable precipitate-strengthening effects on friction-stir welded joints of third-generation Al–Cu–Li alloys , 2021, Philosophical Magazine Letters.

[11]  Guoqun Zhao,et al.  Precipitation behavior of an Al–Cu–Li–X alloy and competing relationships among precipitates at different aging temperatures , 2021, Materials Science and Engineering: A.

[12]  Xinfang Zhang,et al.  Enhanced strength and ductility in an Al–Cu–Li alloy via long-term ageing , 2021 .

[13]  Minghui Huang,et al.  Investigation on the asymmetric creep ageing behaviour of 2195-T84 Al–Li alloy under different tensile and compressive stress levels , 2021 .

[14]  Minghui Huang,et al.  Effects of pre-strain and stress level on stress relaxation ageing behaviour of 2195 Al–Li alloy: Experimental and constitutive modelling , 2021 .

[15]  S. T. Amancio-Filho,et al.  Microstructural evolution and mechanical performance of Al–Cu–Li alloy joined by friction stir welding , 2020 .

[16]  Chunhui Liu,et al.  Strong stress-level dependence of creep-ageing behavior in Al–Cu–Li alloy , 2020 .

[17]  Xiaodong Liu,et al.  The effects of temperature on the creep-aging behavior and mechanical properties of AA2050-T34 alloy , 2020 .

[18]  L. Zhan,et al.  Study on tensile/compressive asymmetry in creep ageing behavior of Al–Cu alloy under different stress levels , 2020 .

[19]  Changlin Yang,et al.  Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength–ductility synergy , 2020 .

[20]  S. Spigarelli,et al.  Physical modeling of the creep response of an Al–Cu–Mg alloy with a fine microstructure transformed by Friction Stir Processing , 2020 .

[21]  Zhide Li,et al.  Regulating effect of pre-stretching degree on the creep aging process of Al-Cu-Li alloy , 2019, Materials Science and Engineering: A.

[22]  Chunhui Liu,et al.  Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy , 2019, Journal of Alloys and Compounds.

[23]  D. Raabe,et al.  Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures , 2019, Materials Science and Engineering: A.

[24]  Yun-lai Deng,et al.  Effects of creep aging upon Al-Cu-Li alloy: Strength, toughness and microstructure , 2018, Journal of Alloys and Compounds.

[25]  J. Qiao,et al.  The constitutive model and threshold stress for characterizing the deformation mechanism of Al0.3CoCrFeNi high entropy alloy , 2018, Materials Science and Engineering: A.

[26]  M. Terada,et al.  On the microstructure characterization of the AA2098-T351 alloy welded by FSW , 2018, Materials Characterization.

[27]  Chuansong Wu,et al.  Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review , 2017 .

[28]  B. Xiao,et al.  Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints , 2017 .

[29]  Zhilin Liu,et al.  Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy , 2017 .

[30]  Ke Huang,et al.  A review of dynamic recrystallization phenomena in metallic materials , 2016 .

[31]  H. Lee,et al.  Effect of precipitates on mechanical properties of AA2195 , 2016 .

[32]  P. Prangnell,et al.  Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195 , 2016 .

[33]  T. Noh,et al.  Atomic structure and growth mechanism of T1 precipitate in Al-Cu-Li-Mg-Ag alloy , 2015 .

[34]  Huijun Li,et al.  Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy , 2015 .

[35]  Jianguo Lin,et al.  Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies , 2015 .

[36]  Masoud Jabbari,et al.  Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model , 2015 .

[37]  Young Won Kim,et al.  Determination of interfacial atomic structure, misfits and energetics of Ω phase in Al–Cu–Mg–Ag alloy , 2014 .

[38]  W. Zeng,et al.  Ageing response of a Al–Cu–Li 2198 alloy , 2014 .

[39]  T. Dorin,et al.  Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy , 2014 .

[40]  E. Kozeschnik,et al.  A model for precipitation strengthening in multi-particle systems , 2014 .

[41]  T. Dorin,et al.  Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy , 2014 .

[42]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[43]  Xin Lin,et al.  An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints , 2013 .

[44]  R. Rioja,et al.  The Evolution of Al-Li Base Products for Aerospace and Space Applications , 2012, Metallurgical and Materials Transactions A.

[45]  P. Prangnell,et al.  A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weld , 2011 .

[46]  J. Indacochea,et al.  Microstructural Assessment of Copper Friction Stir Welds , 2009 .

[47]  H. Brehm,et al.  A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals , 2009 .

[48]  H. Bhadeshia,et al.  Recent advances in friction-stir welding : Process, weldment structure and properties , 2008 .

[49]  M. E. Kassner,et al.  Harper-Dorn Creep , 2007 .

[50]  N. Nayan,et al.  Development and characterization of Al–Li alloys , 2006 .

[51]  Tracy W. Nelson,et al.  Microstructure evolution during FSW/FSP of high strength aluminum alloys , 2005 .

[52]  Rajiv S. Mishra,et al.  Microstructural investigation of friction stir welded 7050-T651 aluminium , 2003 .

[53]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[54]  T. Sanders,et al.  Grain boundary precipitate free zones in Al-Li alloys , 1987 .

[55]  K. Murty,et al.  Grain-size-dependent creep of stainless steel , 1983 .

[56]  C. R. Barrett,et al.  EFFECT OF GRAIN SIZE AND ANNEALING TREATMENT ON STEADY STATE CREEP OF COPPER , 1965 .

[57]  M. Yadava,et al.  Microstructure and tensile response of friction stir welded Al–Cu–Li (AA2198-T8) alloy , 2020 .

[58]  Trevor A. Dean,et al.  A review of the development of creep age forming: Experimentation, modelling and applications , 2011 .