Two Energy Conserving Numerical Schemes for the Klein-Gordon-Zakharov Equations

Two new difference schemes are proposed for an initial-boundary-value problem of the Klein-Gordon-Zakharov (KGZ) equations. They have the advantage that there is a discrete energy which is conserved. Their stability and convergence of difference solutions are proved in order O() on the basis of the prior estimates. Results of numerical experiments demonstrate the efficiency of the new schemes.

[1]  Tohru Ozawa,et al.  Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions , 1999 .

[2]  G. Adomian,et al.  Non-perturbative solution of the Klein-Gordon-Zakharov equation , 1997 .

[3]  Qianshun Chang,et al.  Finite difference method for generalized Zakharov equations , 1995 .

[4]  Luming Zhang Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..

[5]  Yau Shu Wong,et al.  An initial-boundary value problem of a nonlinear Klein-Gordon equation , 1997 .

[6]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[7]  Anders Wäänänen,et al.  Advanced resource connector middleware for lightweight computational Grids , 2007 .

[8]  Li Yang,et al.  Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..

[9]  Yu-Lin Chou Applications of Discrete Functional Analysis to the Finite Difference Method , 1991 .

[10]  D. R. Nicholson,et al.  Numerical solution of the Zakharov equations , 1983 .

[11]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[12]  R. Glassey Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension , 1992 .

[13]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[14]  R. Glassey Approximate solutions to the Zakharov equations via finite differences , 1992 .

[15]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[16]  Luming Zhang,et al.  Numerical simulation of a nonlinearly coupled Schrödinger system: A linearly uncoupled finite difference scheme , 2008, Math. Comput. Simul..

[17]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[18]  Qianshun Chang,et al.  A Conservative Difference Scheme for the Zakharov Equations , 1994 .

[19]  Zuntao Fu,et al.  The periodic solutions for a class of coupled nonlinear Klein–Gordon equations , 2004 .

[20]  Luming Zhang,et al.  A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..

[21]  Yuan Guangwei,et al.  Global smooth solution for the Klein–Gordon–Zakharov equations , 1995 .

[22]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[23]  Ting-chun Wang,et al.  Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator , 2006, Appl. Math. Comput..

[24]  Qian-shun Chang,et al.  A numerical method for a system of generalized nonlinear Schro¨dinger equations , 1986 .

[25]  Lu-ming Zhang,et al.  Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations , 2012 .