CONSTRAINTS ON GRAVITY AND DARK ENERGY FROM THE PAIRWISE KINEMATIC SUNYAEV–ZEL’DOVICH EFFECT

We calculate the constraints on dark energy and cosmic modifications to gravity achievable with upcoming cosmic microwave background (CMB) surveys sensitive to the Sunyaev–Zel’dovich (SZ) effects. The analysis focuses on using the mean pairwise velocity of clusters as observed through the kinematic SZ effect (kSZ), an approach based on the same methods used for the first detection of the kSZ effect, and includes a detailed derivation and discussion of this statistic’s covariance under a variety of different survey assumptions. The potential of current, Stage II, and upcoming, Stages III and IV, CMB observations are considered, in combination with contemporaneous spectroscopic and photometric galaxy observations. A detailed assessment is made of the sensitivity to the assumed statistical and systematic uncertainties in the optical depth determination, the magnitude and uncertainty in the minimum detectable mass, and the importance of pairwise velocity correlations at small separations, where nonlinear effects can start to arise. In combination with Stage III constraints on the expansion history, such as those projected by the Dark Energy Task Force, we forecast 5% and 3% for fractional errors on the growth factor, γ, for Stage III and IV surveys, respectively, and 2% constraints on the growth rate, fg, for a Stage IV survey for 0.2 < z < 0.6 ?> . The results suggest that kSZ measurements of cluster peculiar velocities, obtained from cross-correlation with upcoming spectroscopic galaxy surveys, could provide robust tests of dark energy and theories of gravity on cosmic scales.

[1]  Lucianne Walkowicz,et al.  The LSST Science Collaborations , 2016 .

[2]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[3]  David N. Spergel,et al.  Precision epoch of reionization studies with next-generation CMB experiments , 2014, 1406.4794.

[4]  S. White,et al.  Matched filter optimization of kSZ measurements with a reconstructed cosmological flow field , 2014, 1404.0007.

[5]  H. Martel,et al.  MAJOR CLUSTER MERGERS AND THE LOCATION OF THE BRIGHTEST CLUSTER GALAXY , 2014, 1403.3063.

[6]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[7]  U. Seljak,et al.  Peculiar velocities in redshift space: formalism, N-body simulations and perturbation theory , 2013, 1312.4214.

[8]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[9]  M. Henze,et al.  NOVAE IN GLOBULAR CLUSTERS , 2013, 1310.6579.

[10]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[11]  Edward J. Wollack,et al.  Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .

[12]  P. McCarthy,et al.  PREDICTING FUTURE SPACE NEAR-IR GRISM SURVEYS USING THE WFC3 INFRARED SPECTROSCOPIC PARALLELS SURVEY , 2013, 1305.1399.

[13]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[14]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: cosmological parameters from three seasons of data , 2013, 1301.0824.

[15]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[16]  Ryan Keisler,et al.  PROSPECTS FOR MEASURING THE RELATIVE VELOCITIES OF GALAXY CLUSTERS IN PHOTOMETRIC SURVEYS USING THE KINETIC SUNYAEV–ZEL'DOVICH EFFECT , 2012, 1211.0668.

[17]  Yun Wang,et al.  Towards more realistic forecasting of dark energy constraints from galaxy redshift surveys , 2012, 1211.0532.

[18]  Graeme Smecher,et al.  Improved performance of TES bolometers using digital feedback , 2012, Other Conferences.

[19]  A. Ealet,et al.  Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure , 2012, 1207.4321.

[20]  K. Umetsu,et al.  A MULTI-WAVELENGTH STUDY OF THE SUNYAEV–ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM , 2012, 1205.0052.

[21]  Edward J. Wollack,et al.  Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.

[22]  M. Rosenman,et al.  HIGH SPECTRAL RESOLUTION MEASUREMENT OF THE SUNYAEV–ZEL'DOVICH EFFECT NULL WITH Z-Spec , 2012, 1202.0029.

[23]  M. Lueker,et al.  COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON THE DURATION AND TIMING OF REIONIZATION FROM THE SOUTH POLE TELESCOPE , 2011, 1111.6386.

[24]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[25]  D. Kirk,et al.  Disentangling dark energy and cosmic tests of gravity from weak lensing systematics , 2011, 1109.4535.

[26]  G. Lewis,et al.  MAPPING GROWTH AND GRAVITY WITH ROBUST REDSHIFT SPACE DISTORTIONS , 2011, 1105.1194.

[27]  David N. Spergel,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV–ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES , 2011, 1101.1951.

[28]  E. Pierpaoli,et al.  MEASURING BULK FLOW OF GALAXY CLUSTERS USING KINEMATIC SUNYAEV–ZELDOVICH EFFECT: PREDICTION FOR PLANCK , 2011, 1101.1581.

[29]  E. Pierpaoli,et al.  MEASURING THE GALAXY CLUSTER BULK FLOW FROM WMAP DATA , 2010, 1011.2781.

[30]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[31]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[32]  J. Bock,et al.  A high signal-to-noise ratio map of the Sunyaev–Zel’dovich increment at 1.1-mm wavelength in Abell 1835 , 2010, 1005.4699.

[33]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[34]  Argelander-Institut fur Astronomie,et al.  Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.

[35]  Portsmouth,et al.  Empirical Hα emitter count predictions for dark energy surveys , 2009, 0911.0686.

[36]  J. Uzan Tests of general relativity on astrophysical scales , 2009, 0908.2243.

[37]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[38]  Hongwei Yu,et al.  A parametrization for the growth index of linear matter perturbations , 2009, 0905.3444.

[39]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[40]  Suman Bhattacharya,et al.  Dark Energy Constraints from Galaxy Cluster Peculiar Velocities , 2007, 0712.0034.

[41]  P. Fosalba,et al.  Probing the largest cosmological scales with the correlation between the cosmic microwave background and peculiar velocities , 2007 .

[42]  L. Amendola,et al.  Measuring the dark side (with weak lensing) , 2007, 0704.2421.

[43]  R. Nichol,et al.  A MaxBCG Catalog of 13,823 Galaxy Clusters from the Sloan Digital Sky Survey , 2007, astro-ph/0701265.

[44]  M. Halpern,et al.  Optical design of the atacama cosmology telescope and the millimeter bolometric array camera. , 2006, Applied optics.

[45]  Suman Bhattacharya,et al.  Cosmological Constraints from Galaxy Cluster Velocity Statistics , 2006, astro-ph/0612555.

[46]  L. Verde,et al.  Correlation Properties of the Kinematic Sunyaev-Zel’dovich Effect and Implications for Dark Energy , 2005, astro-ph/0511061.

[47]  G. Holder,et al.  Constrained Cluster Parameters from Sunyaev-Zel’dovich Observations , 2005, astro-ph/0504274.

[48]  J. Cohn Power spectrum and correlation function errors: Poisson vs. Gaussian shot noise , 2005, astro-ph/0503285.

[49]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[50]  L. Moscardini,et al.  Measuring cluster peculiar velocities with the Sunyaev-Zel'dovich effect: scaling relations and systematics , 2004, astro-ph/0405365.

[51]  E. Komatsu,et al.  Exploring Cluster Physics with High-Resolution Sunyaev-Zel'dovich Effect Images and X-Ray Data , 2003, astro-ph/0311574.

[52]  J. J. Bock,et al.  Peculiar Velocity Limits from Measurements of the Spectrum of the Sunyaev-Zeldovich Effect in Six Clusters of Galaxies , 2003, astro-ph/0303510.

[53]  D. Nagai,et al.  Effect of Internal Flows on Sunyaev-Zeldovich Measurements of Cluster Peculiar Velocities , 2002, astro-ph/0208308.

[54]  G. Holder Measuring Cluster Peculiar Velocities and Temperatures at Centimeter and Millimeter Wavelengths , 2002, astro-ph/0207600.

[55]  R. Sheth,et al.  On the streaming motions of haloes and galaxies , 2000, astro-ph/0010137.

[56]  Ravi K. Sheth Antonaldo Diaferio Peculiar velocities of galaxies and clusters , 2000, astro-ph/0009166.

[57]  D. Eisenstein,et al.  Correlations in the Spatial Power Spectrum Inferred from Angular Clustering , 1999, astro-ph/9912149.

[58]  R. Sunyaev,et al.  Microwave polarization in the direction of galaxy clusters induced by the CMB quadrupole anisotropy , 1999, astro-ph/9903287.

[59]  P. Ferreira,et al.  Streaming Velocities as a Dynamical Estimator of Ω , 1998, astro-ph/9812456.

[60]  R. Durrer,et al.  Dynamics of Pairwise Motions , 1998, astro-ph/9812387.

[61]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[62]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[63]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[64]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[65]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[66]  L. Verde,et al.  Large-scale bias in the Universe: bispectrum method , 1997, astro-ph/9706059.

[67]  P. A. R. Ade,et al.  Limits on the Peculiar Velocities of Two Distant Clusters Using the Kinematic Sunyaev-Zeldovich Effect , 1997, astro-ph/9702223.

[68]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[69]  P. Peebles,et al.  On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe , 1977 .

[70]  W. Marsden I and J , 2012 .

[71]  D. Eisenstein,et al.  Correlations in the Spatial Power Spectra Inferred from Angular Clustering: Methods and Application to the Automated Plate Measuring Survey , 2001 .