Smart responsive organic microlasers with multiple emission states for high-security optical encryption

[1]  Y. Zhao,et al.  Organic Micro/Nanoscale Lasers. , 2016, Accounts of chemical research.

[2]  Chang-ling Zou,et al.  Dual-color single-mode lasing in axially coupled organic nanowire resonators , 2017, Science Advances.

[3]  Philipp Liehm,et al.  Lasing within Live Cells Containing Intracellular Optical Microresonators for Barcode-Type Cell Tagging and Tracking. , 2015, Nano letters.

[4]  Chuang Zhang,et al.  Organic Janus Microspheres: A General Approach to All-Color Dual-Wavelength Microlasers. , 2019, Journal of the American Chemical Society.

[5]  T. Ebbesen,et al.  π-Electronic Co-crystal Microcavities with Selective Vibronic-Mode Light Amplification: Toward Förster Resonance Energy Transfer Lasing. , 2018, Nano letters.

[6]  Leila Motiei,et al.  Message in a molecule , 2016, Nature Communications.

[7]  Hengwei Lin,et al.  Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting. , 2016, Angewandte Chemie.

[8]  Yuchen Wu,et al.  Random Organic Nanolaser Arrays for Cryptographic Primitives , 2019, Advanced materials.

[9]  Handong Sun,et al.  Multicolor lasing prints , 2015 .

[10]  Jian Zhu,et al.  Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform , 2018, Advanced materials.

[11]  Soo Young Park,et al.  Highly fluorescent chameleon nanoparticles and polymer films: multicomponent organic systems that combine FRET and photochromic switching. , 2012, Journal of the American Chemical Society.

[12]  Y. Zhao,et al.  Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation , 2019, Angewandte Chemie.

[13]  T. Kanbara,et al.  Spherical assemblies from π-conjugated alternating copolymers: toward optoelectronic colloidal crystals. , 2013, Journal of the American Chemical Society.

[14]  Yuhui Wang,et al.  Conversion of Carbon Dots from Fluorescence to Ultralong Room‐Temperature Phosphorescence by Heating for Security Applications , 2018, Advanced materials.

[15]  Zhaoquan Yao,et al.  Multi-Stimuli-Responsive Fluorescence Switching from a Pyridine-Functionalized Tetraphenylethene AIEgen. , 2018, ACS applied materials & interfaces.

[16]  T. Nagao,et al.  Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade. , 2016, ACS nano.

[17]  Masahiro Irie,et al.  Organic chemistry: A digital fluorescent molecular photoswitch , 2002, Nature.

[18]  Paul R. McGonigal,et al.  Tunable solid-state fluorescent materials for supramolecular encryption , 2015, Nature Communications.

[19]  Markus Karl,et al.  Flexible and ultra-lightweight polymer membrane lasers , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[20]  Lei Liu,et al.  Water‐Triggered Luminescent “Nano‐bombs” Based on Supra‐(Carbon Nanodots) , 2015, Advanced materials.

[21]  Wei Zhang,et al.  Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. , 2015, Angewandte Chemie.

[22]  Y. Zhao,et al.  Covert Photonic Barcodes Based on Light Controlled Acidichromism in Organic Dye Doped Whispering‐Gallery‐Mode Microdisks , 2017, Advanced materials.

[23]  David J. Norris,et al.  Colloidal-Quantum-Dot Ring Lasers with Active Color Control , 2017, Nano letters.

[24]  A. Schenning,et al.  Temperature‐Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix , 2017, Angewandte Chemie.

[25]  Dong Ryeol Whang,et al.  High-contrast red-green-blue tricolor fluorescence switching in bicomponent molecular film. , 2015, Angewandte Chemie.

[26]  Haiyun Dong,et al.  Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle. , 2018, Angewandte Chemie.

[27]  Yuping Dong,et al.  Stimuli-responsive fluorophores with aggregation-induced emission: implication for dual-channel optical data storage , 2016 .

[28]  Bo Wang,et al.  Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption , 2017, Nature Communications.

[29]  Wei Huang,et al.  Smart responsive phosphorescent materials for data recording and security protection , 2014, Nature Communications.

[30]  Zhaoquan Yao,et al.  A Dual-Stimuli-Responsive Coordination Network Featuring Reversible Wide-Range Luminescence-Tuning Behavior. , 2019, Angewandte Chemie.

[31]  Weisheng Liu,et al.  A Stimuli-Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption. , 2017, Angewandte Chemie.

[32]  Y. Zhao,et al.  Proton-Controlled Organic Microlaser Switch. , 2018, ACS nano.

[33]  J. Hofkens,et al.  Reversible Optical Writing and Data Storage in an Anthracene-Loaded Metal-Organic Framework. , 2018, Angewandte Chemie.

[34]  He Tian,et al.  Quantitative photoswitching in bis(dithiazole)ethene enables modulation of light for encoding optical signals. , 2014, Angewandte Chemie.

[35]  Kevin Burgess,et al.  BODIPY dyes and their derivatives: syntheses and spectroscopic properties. , 2007, Chemical reviews.

[36]  Eduardo Enciso,et al.  FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles , 2012, Nature Photonics.

[37]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[38]  Tianran Lin,et al.  Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots. , 2016, Angewandte Chemie.