miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma

miR-612 suppresses local invasion and distant colonization by directly inhibiting AKT2 in HCC.

[1]  Jing Zhou,et al.  Analysis of microRNA expression profiling identifies microRNA‐503 regulates metastatic function in hepatocellular cancer cell , 2011, Journal of surgical oncology.

[2]  R. Weinberg,et al.  A Perspective on Cancer Cell Metastasis , 2011, Science.

[3]  Q. Ye,et al.  Thrombin is a therapeutic target for metastatic osteopontin‐positive hepatocellular carcinoma , 2010, Hepatology.

[4]  I. Ng,et al.  MicroRNA‐125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B 2 , 2010, Hepatology.

[5]  Xiao‐hui Huang,et al.  MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell , 2010, Medical oncology.

[6]  Ming Yao,et al.  Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA , 2010, Nature Cell Biology.

[7]  Ming Yao,et al.  MicroRNA‐30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma , 2010, Hepatology.

[8]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[9]  Stephanie Roessler,et al.  MicroRNA expression, survival, and response to interferon in liver cancer. , 2009, The New England journal of medicine.

[10]  Qian Wang,et al.  Bead‐based microarray analysis of microRNA expression in hepatocellular carcinoma: miR‐338 is downregulated , 2009, Hepatology research : the official journal of the Japan Society of Hepatology.

[11]  Shuhan Sun,et al.  Up‐regulated microRNA‐143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression , 2009, Hepatology.

[12]  D. Birnbaum,et al.  Breast cancer stem cells: tools and models to rely on , 2009, BMC Cancer.

[13]  Hsien-Da Huang,et al.  MicroRNA‐122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma , 2009, Hepatology.

[14]  Yi Tie,et al.  MicroRNA‐101 regulates expression of the v‐fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma , 2009, Hepatology.

[15]  R. Weinberg,et al.  Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits , 2009, Nature Reviews Cancer.

[16]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[17]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[18]  Jie Chen,et al.  Lentiviral‐mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma , 2008, Hepatology.

[19]  G. Castellano,et al.  Activation of the Osteopontin/Matrix Metalloproteinase-9 Pathway Correlates with Prostate Cancer Progression , 2008, Clinical Cancer Research.

[20]  Zhao-You Tang,et al.  Biological characteristics of fluorescent protein-expressing human hepatocellular carcinoma xenograft model in nude mice , 2008, European journal of gastroenterology & hepatology.

[21]  M. F. Shannon,et al.  A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. , 2008, Cancer research.

[22]  Robert A. Weinberg,et al.  Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. , 2008, Developmental cell.

[23]  Zhao-You Tang,et al.  High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[25]  Sun-Mi Park,et al.  The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. , 2008, Genes & development.

[26]  Krista A. Zanetti,et al.  Identification of metastasis‐related microRNAs in hepatocellular carcinoma , 2008, Hepatology.

[27]  W. Gerald,et al.  Endogenous human microRNAs that suppress breast cancer metastasis , 2008, Nature.

[28]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[29]  J. Nevins,et al.  Mining gene expression profiles: expression signatures as cancer phenotypes , 2007, Nature Reviews Genetics.

[30]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[31]  Xin Wei Wang,et al.  Gene Expression Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma , 2007, Clinical Cancer Research.

[32]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[33]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[35]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Toru Suzuki,et al.  Stage‐specific expression of microRNAs during Xenopus development , 2005, FEBS letters.

[37]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[38]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[39]  Yan Li,et al.  Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics , 2004, Journal of Cancer Research and Clinical Oncology.

[40]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[41]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[42]  W. Hahn,et al.  Erosion of the telomeric single-strand overhang at replicative senescence , 2003, Nature Genetics.

[43]  X. Wang,et al.  Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning , 2003, Nature Medicine.

[44]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[45]  Robert M. Hoffman,et al.  An ultra-metastatic model of human colon cancer in nude mice , 1999, Clinical & Experimental Metastasis.

[46]  Zeng-chen Ma,et al.  Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues , 1996, International journal of cancer.

[47]  I. Ng,et al.  The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. , 2011, Gastroenterology.

[48]  I. Ng,et al.  MicroRNA-125 b Suppressesed Human Liver Cancer Cell Proliferation and Metastasis by Directly Targeting Oncogene LIN , 2010 .

[49]  Ulrich Mansmann,et al.  GlobalANCOVA: exploration and assessment of gene group effects , 2008, Bioinform..