Chapter 3 Reversible Markov Chains

Chapter 2 reviewed some aspects of the elementary theory of general nite irreducible Markov chains. In this chapter we specialize to reversible chains, treating the discrete and continuous-time cases in parallel. After section 3 we shall assume that we are dealing with reversible chains without continually repeating this assumption, and shall instead explicitly say \general" to mean not-necessarily reversible.

[1]  O. Bottema Über die Irrfahrt in einem Straßennetz , 1935 .

[2]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[4]  F. Göbel,et al.  Random walks on graphs , 1974 .

[5]  Kai Borre,et al.  Strength Analysis of Leveling-Type Networks. , 1974 .

[6]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[7]  M. Fukushima Dirichlet forms and Markov processes , 1980 .

[8]  P. Moran,et al.  Reversibility and Stochastic Networks , 1980 .

[9]  D. Griffeath,et al.  Critical Phenomena for Spitzer's Reversible Nearest Particle Systems , 1982 .

[10]  D. Aldous Markov chains with almost exponential hitting times , 1982 .

[11]  Terry Lyons A Simple Criterion for Transience of a Reversible Markov Chain , 1983 .

[12]  Mark Brown Approximating IMRL Distributions by Exponential Distributions, with Applications to First Passage Times , 1983 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  N. Biggs RANDOM WALKS AND ELECTRICAL NETWORKS (Carus Mathematical Monographs 22) , 1987 .

[15]  Andrei Z. Broder,et al.  Bounds on the cover time , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  D. Zuckerman,et al.  Covering times of random walks on bounded degree trees and other graphs , 1989 .

[17]  D. Aldous Hitting times for random walks on vertex-transitive graphs , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Kenneth A. Berman,et al.  Random Paths and Cuts, Electrical Networks, and Reversible Markov Chains , 1990, SIAM J. Discret. Math..

[19]  R. Durrett Probability: Theory and Examples , 1993 .

[20]  Mark Brown Consequences of Monotonicity for Markov Transition Functions , 1990 .

[21]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[22]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[23]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .

[24]  Prabhakar Raghavan,et al.  Random walks on weighted graphs and applications to on-line algorithms , 1993, JACM.

[25]  M. Karonski Collisions among Random Walks on a Graph , 1993 .

[26]  David Aldous,et al.  Inequalities for rare events in time-reversible Markov chains II , 1993 .

[27]  D. Mcdonald,et al.  Asymptotics of Exit Times for Markov Jump Processes I , 1994 .

[28]  Prasad Tetali An Extension of Foster's Network Theorem , 1994, Comb. Probab. Comput..

[29]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.

[30]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.