Subelliptic, second order differential operators

[1]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .

[2]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[3]  E. Davies,et al.  EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON HEAT KERNELS , 1987 .

[4]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[5]  D. Jerison,et al.  Estimates for the heat kernel for a sum of squares of vector fields , 1986 .

[6]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[7]  David A. Stegenga,et al.  Multipliers of the Dirichlet space , 1980 .

[8]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[9]  Daniel W. Stroock,et al.  Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator , 1988 .

[10]  Operateijrs sous-elliptiques et regularite des solutions d'equations aux derivees partielles non lineaires du second ordre en deux variablfs , 1986 .

[11]  D. Jerison,et al.  The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II , 1981 .

[12]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[13]  R. Melrose Propagation for the Wave Group of a Positive Subelliptic Second-Order Differential Operator , 1986 .

[14]  Hugo Rossi,et al.  On the Extension of Holomorphic Functions from the Boundary of a Complex Manifold , 1965 .

[15]  Fundamental solutions for second order subelliptic operators , 1986 .

[16]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[17]  A. Sánchez-Calle Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .

[18]  G. Métivier Fonction spectrale et valeurs propres d'une classe d'operateurs non elliptiques , 1976 .

[19]  S. Kusuoka,et al.  Applications of the Malliavin calculus, Part III , 1984 .

[20]  Gerald B. Folland,et al.  A fundamental solution for a subelliptic operator , 1973 .

[21]  P. Meyer,et al.  Estimation en temps petit de la densité d'une diffusion hypoelliptique , 1985 .

[22]  A. Ancona Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .

[23]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[24]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[25]  J. Kohn Boundaries of Complex Manifolds , 1965 .

[26]  B. Muckenhoupt Hardy's inequality with weights , 1972 .

[27]  R. Langer Boundary Problems in Differential Equations , 1960 .

[28]  V. Grusin ON A CLASS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS DEGENERATE ON A SUBMANIFOLD , 1971 .

[29]  Joseph J. Kohn,et al.  Degenerate elliptic-parabolic equations of second order , 1967 .

[30]  M. Derridj Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques , 1971 .

[31]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[32]  Carlos E. Kenig,et al.  Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .

[33]  E. Stein,et al.  Estimates for the complex and analysis on the heisenberg group , 1974 .

[34]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[35]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .