Subelliptic, second order differential operators
暂无分享,去创建一个
[1] J. Moser. On Harnack's theorem for elliptic differential equations† , 1961 .
[2] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[3] E. Davies,et al. EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON HEAT KERNELS , 1987 .
[4] B. Gaveau. Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .
[5] D. Jerison,et al. Estimates for the heat kernel for a sum of squares of vector fields , 1986 .
[6] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[7] David A. Stegenga,et al. Multipliers of the Dirichlet space , 1980 .
[8] Paul C. Fife,et al. Second-Order Equations With Nonnegative Characteristic Form , 1973 .
[9] Daniel W. Stroock,et al. Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator , 1988 .
[11] D. Jerison,et al. The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II , 1981 .
[12] E. Stein,et al. Balls and metrics defined by vector fields I: Basic properties , 1985 .
[13] R. Melrose. Propagation for the Wave Group of a Positive Subelliptic Second-Order Differential Operator , 1986 .
[14] Hugo Rossi,et al. On the Extension of Holomorphic Functions from the Boundary of a Complex Manifold , 1965 .
[15] Fundamental solutions for second order subelliptic operators , 1986 .
[16] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[17] A. Sánchez-Calle. Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .
[18] G. Métivier. Fonction spectrale et valeurs propres d'une classe d'operateurs non elliptiques , 1976 .
[19] S. Kusuoka,et al. Applications of the Malliavin calculus, Part III , 1984 .
[20] Gerald B. Folland,et al. A fundamental solution for a subelliptic operator , 1973 .
[21] P. Meyer,et al. Estimation en temps petit de la densité d'une diffusion hypoelliptique , 1985 .
[22] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .
[23] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[24] E. Stein,et al. Hypoelliptic differential operators and nilpotent groups , 1976 .
[25] J. Kohn. Boundaries of Complex Manifolds , 1965 .
[26] B. Muckenhoupt. Hardy's inequality with weights , 1972 .
[27] R. Langer. Boundary Problems in Differential Equations , 1960 .
[28] V. Grusin. ON A CLASS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS DEGENERATE ON A SUBMANIFOLD , 1971 .
[29] Joseph J. Kohn,et al. Degenerate elliptic-parabolic equations of second order , 1967 .
[30] M. Derridj. Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques , 1971 .
[31] D. Stroock,et al. Applications of the Malliavin calculus. II , 1985 .
[32] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[33] E. Stein,et al. Estimates for the complex and analysis on the heisenberg group , 1974 .
[34] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[35] G. Folland,et al. Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .