Review in Sound Absorbing Materials

This article is a bibliographical revision concerning acoustic absorbing materials, also known as poroelastics. These absorbing materials are a passive medium use extensively in the industry to reduce noise. This review presents the fundamental parameters that define each of the parts comprising these materials, as well as current experimental methods used to measure said parameters. Further along, we will analyze the principle models of characterization in order to study the behaviour of poroelastic materials. Given the lack of accuracy of the standing wave method three absorbing materials are characterized using said principle models. A comparison between measurements with the standing wave method and the predicted surface impedance with the models is shown.

[1]  Pascal Rebillard,et al.  Modelization at oblique incidence of layered porous materials with impervious screens , 1990 .

[2]  H. B. Kingsbury,et al.  Dynamic characterization of poroelastic materials , 1979 .

[3]  Denis Lafarge,et al.  Dynamic compressibility of air in porous structures at audible frequencies , 1997 .

[4]  C. Ayrault,et al.  Acoustical and mechanical characterization of anisotropic open-cell foams , 1998 .

[5]  Manuel Melon,et al.  Correlation between tortuosity and transmission coefficient of porous media at high frequency , 1995 .

[6]  Robert J. S. Brown,et al.  Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media , 1980 .

[7]  Kwang-joon Kim,et al.  A method to determine the complex modulus and poisson's ratio of viscoelastic materials for FEM applications , 1990 .

[8]  A Cunningham,et al.  Low density cellular plastics : physical basis of behaviour , 1994 .

[9]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[10]  J. Landaluze,et al.  APPLICATION OF ACTIVE NOISE CONTROL TO AN ELEVATOR CABIN , 2002 .

[11]  M. R. Stinson The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross- sectional shape , 1991 .

[12]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[13]  N. C. Hilyard,et al.  Low density cellular plastics , 1994 .

[14]  Frank Fahy,et al.  Foundations of engineering acoustics , 2000 .

[15]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[16]  T. E. Vigran,et al.  Prediction and measurements of the influence of boundary conditions in a standing wave tube , 1997 .

[17]  Keith Attenborough,et al.  On the acoustic slow wave in air-filled granular media , 1987 .

[18]  Raymond Panneton,et al.  Polynomial relations for quasi-static mechanical characterization of isotropic poroelastic materials , 2001 .

[19]  Jian Fei Chen,et al.  17th ASCE Engineering Mechanics Conference , 2004 .

[20]  G. Kirchhoff,et al.  Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung , 1868 .

[21]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[22]  Pascal Rebillard,et al.  Inhomogeneous Biot waves in layered media , 1989 .

[23]  Yvan Champoux,et al.  Air‐based system for the measurement of porosity , 1991 .

[24]  C Aristégui,et al.  Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. , 2003, The Journal of the Acoustical Society of America.

[25]  Franck Sgard,et al.  Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests). , 2007, The Journal of the Acoustical Society of America.

[26]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[27]  E. N. Bazley,et al.  Acoustical properties of fibrous absorbent materials , 1970 .

[28]  M. Biot THEORY OF DEFORMATION OF A POROUS VISCOELASTIC ANISOTROPIC SOLID , 1956 .

[29]  J. Keller,et al.  Poroelasticity equations derived from microstructure , 1981 .

[30]  H. B. Kingsbury,et al.  On the dynamic behavior of poroelastic materials , 1979 .

[31]  Yvan Champoux,et al.  New empirical equations for sound propagation in rigid frame fibrous materials , 1992 .

[32]  K. Uno Ingard,et al.  Notes on Sound Absorption Technology , 1994 .

[33]  L. R. Quartararo,et al.  Noise and Vibration Control Engineering: Principles and Applications , 1992 .

[34]  Claude Depollier,et al.  Acoustical properties of partially reticulated foams with high and medium flow resistance , 1986 .

[35]  I. Vardoulakis,et al.  Dynamic behavior of nearly saturated porous media , 1986 .

[36]  Pascal Rebillard,et al.  Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness , 1991 .

[37]  C. Zwikker,et al.  Sound Absorbing Materials , 1949 .

[38]  ON THE EQUIVALENCE OF THE LINEAR BIOT'S THEORY AND THE LINEAR THEORY OF POROUS MEDIA , 2003 .

[39]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[40]  T. Pritz,et al.  Transfer function method for investigating the complex modulus of acoustic materials: Spring-like specimen , 1980 .

[41]  Franck Sgard,et al.  Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube. , 2003, The Journal of the Acoustical Society of America.

[42]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction , 1972 .

[43]  Padres y Maestros Física con ordenador , 2002 .