Gaussian one-way thermal quantum cryptography with finite-size effects

We study the impact of finite-size effects on the security of thermal one-way quantum cryptography. Our approach considers coherent/squeezed states at the preparation stage, on the top of which the sender adds trusted thermal noise. We compute the key rate incorporating finite-size effects, and we obtain the security threshold at different frequencies. As expected finite-size effects deteriorate the performance of thermal quantum cryptography. Our analysis is useful to quantify the impact of this degradation on relevant parameters like tolerable attenuation, transmission frequencies at which one can achieve security.

[1]  P. Glenn Gulak,et al.  Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography , 2017, npj Quantum Information.

[2]  Seth Lloyd,et al.  Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.

[3]  Vladyslav C. Usenko,et al.  Unidimensional continuous-variable quantum key distribution , 2015, 1504.07093.

[4]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[5]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[6]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[7]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[8]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates , 2015, 1510.08737.

[9]  Jeffrey H. Shapiro,et al.  Practical high-dimensional quantum key distribution with decoy states , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[10]  Mario Berta,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2012 .

[11]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[12]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[13]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication , 2016, 1607.00457.

[14]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[15]  Anthony Leverrier,et al.  Composable security proof for continuous-variable quantum key distribution with coherent States. , 2014, Physical review letters.

[16]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[17]  Stefano Mancini,et al.  Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation , 2015 .

[18]  Nathan Walk,et al.  Security of continuous-variable quantum cryptography with Gaussian postselection , 2013 .

[19]  Christian Weedbrook,et al.  Security proof of continuous-variable quantum key distribution using three coherent states , 2017, 1709.01758.

[20]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[21]  Vladyslav C. Usenko,et al.  Trusted Noise in Continuous-Variable Quantum Key Distribution: A Threat and a Defense , 2016, Entropy.

[22]  S. Pirandola,et al.  Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks , 2017, Physical Review A.

[23]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[24]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[25]  Eleni Diamanti,et al.  Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations , 2015, Entropy.

[26]  T. Ralph,et al.  Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise , 2007, 0705.2627.

[27]  Stefano Pirandola,et al.  Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables , 2017, 1707.04599.

[28]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[29]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Tobias Gehring,et al.  Single-quadrature continuous-variable quantum key distribution , 2015, Quantum Inf. Comput..

[31]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[32]  Radim Filip Continuous-variable quantum key distribution with noisy coherent states , 2008 .

[33]  Anthony Leverrier,et al.  Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. , 2008, Physical review letters.

[34]  Stefano Pirandola,et al.  Continuous-Variable Quantum Key Distribution using Thermal States , 2011, 1110.4617.

[35]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[36]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[37]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  Stefano Pirandola,et al.  Gaussian two-mode attacks in one-way quantum cryptography , 2017 .

[40]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[41]  Bingjie Xu,et al.  Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution , 2016, 1601.02799.

[42]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[43]  Tobias Gehring,et al.  Continuous Variable Quantum Key Distribution with a Noisy Laser , 2015, Entropy.

[44]  Vladyslav C. Usenko,et al.  Feasibility of continuous-variable quantum key distribution with noisy coherent states , 2009, 0904.1694.

[45]  Radim Filip,et al.  Long-distance continuous-variable quantum key distribution with efficient channel estimation , 2014 .

[46]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[47]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[48]  Seth Lloyd,et al.  Quantum cryptography approaching the classical limit. , 2010, Physical review letters.

[49]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[50]  Stefano Pirandola,et al.  General immunity and superadditivity of two-way Gaussian quantum cryptography , 2016, Scientific Reports.

[51]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[52]  S. Lloyd,et al.  Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. , 2008, Physical review letters.

[53]  Peng Huang,et al.  Long-distance continuous-variable quantum key distribution by controlling excess noise , 2016, Scientific Reports.

[54]  S. Lloyd,et al.  High-rate quantum cryptography in untrusted networks , 2013, 1312.4104.

[55]  W. Marsden I and J , 2012 .

[56]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[57]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.