A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila

Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition, and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. Author summary Different insect species exhibit one of two distinct modes of determining their body segments during development: they either use a molecular oscillator to position segments sequentially, or they generate segments simultaneously through a hierarchical gene-regulatory cascade. The sequential mode is ancestral, while the simultaneous mode has been derived from it independently several times during evolution. In this paper, we present evidence which suggests that simultaneous segmentation also involves an oscillator in the posterior of the embryo of the vinegar fly, Drosophila melanogaster. This surprising result indicates that both modes of segment determination are much more similar than previously thought. Such similarity provides an important step towards explaining the frequent evolutionary transitions between sequential and simultaneous segmentation.

[1]  S. Counce The Strategy of the Genes , 1958, The Yale Journal of Biology and Medicine.

[2]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[3]  L. A. G. Dresel,et al.  Elementary Numerical Analysis , 1966 .

[4]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[5]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[6]  K. Sander Specification of the Basic Body Pattern in Insect Embryogenesis1 , 1976 .

[7]  E. C. Zeeman,et al.  A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. , 1976, Journal of theoretical biology.

[8]  P. Ingham,et al.  Isolation, structure, and expression of even-skipped: A second pair-rule gene of Drosophila containing a homeo box , 1986, Cell.

[9]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.

[10]  M. Akam,et al.  The molecular basis for metameric pattern in the Drosophila embryo. , 1987, Development.

[11]  Andrew W. Murray,et al.  Cyclin synthesis drives the early embryonic cell cycle , 1989, Nature.

[12]  C. S. Parker,et al.  The caudal gene product is a direct activator of fushi tarazu transcription during Drosophila embryogenesis , 1989, Nature.

[13]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[14]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[15]  M. Levine,et al.  Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. , 1991, Development.

[16]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[17]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[18]  D. Tautz,et al.  Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. , 1995, Development.

[19]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[20]  P. Maini,et al.  Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. , 1996, Journal of theoretical biology.

[21]  O. Pourquié,et al.  Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis , 1997, Cell.

[22]  H. Jäckle,et al.  Mechanism and Bicoid‐dependent control of hairy stripe 7 expression in the posterior region of the Drosophila embryo , 1997, The EMBO journal.

[23]  H. Jäckle,et al.  Activation of posterior pair-rule stripe expression in response to maternal caudal and zygotic knirps activities , 1998, Mechanisms of Development.

[24]  L. -. Wu,et al.  Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. , 1998, Development.

[25]  G. Morata,et al.  Caudal is the Hox gene that specifies the most posterior Drosophile segment , 1999, Nature.

[26]  Yuefan Deng,et al.  Parallel Simulated Annealing by Mixing of States , 1999 .

[27]  S. Fullerton,et al.  Phenogenetic drift and the evolution of genotype-phenotype relationships. , 2000, Theoretical population biology.

[28]  J. True,et al.  Developmental system drift and flexibility in evolutionary trajectories , 2001, Evolution & development.

[29]  William H. Press,et al.  Numerical recipes in C , 2002 .

[30]  G. K. Davis,et al.  Short, long, and beyond: molecular and embryological approaches to insect segmentation. , 2002, Annual review of entomology.

[31]  M. Akam,et al.  A Double Segment Periodicity Underlies Segment Generation in Centipede Development , 2004, Current Biology.

[32]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[33]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[34]  Andrew D. Peel,et al.  The evolution of arthropod segmentation mechanisms. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  Ariel D. Chipman,et al.  Arthropod Segmentation: beyond the Drosophila paradigm , 2005, Nature Reviews Genetics.

[36]  Samuel D. Gale,et al.  A major role for zygotic hunchback in patterning the Nasonia embryo , 2005, Development.

[37]  K. Weiss,et al.  The phenogenetic logic of life , 2005, Nature Reviews Genetics.

[38]  Ekat Kritikou,et al.  Cell signalling: Divided divisions , 2005, Nature Reviews Molecular Cell Biology.

[39]  Thomas C Kaufman,et al.  Short and long germ segmentation: unanswered questions in the evolution of a developmental mode , 2005, Evolution & development.

[40]  Claude Desplan,et al.  Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia , 2006, Nature.

[41]  Claude Desplan,et al.  A caudal mRNA gradient controls posterior development in the wasp Nasonia , 2006, Development.

[42]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics , 2006, Genome Biology.

[43]  Susan J. Brown,et al.  A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Johannes Jaeger,et al.  On the dynamic nature of positional information. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  Eric S. Haag,et al.  Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions , 2006, Genetica.

[46]  Julian Lewis,et al.  Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism , 2007, PLoS biology.

[47]  David H. Sharp,et al.  Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster , 2007, Mechanisms of Development.

[48]  S. Small,et al.  Permissive and Instructive Anterior Patterning Rely on mRNA Localization in the Wasp Embryo , 2007, Science.

[49]  Manu,et al.  Characterization of the Drosophila segment determination morphome. , 2008, Developmental biology.

[50]  Andrew D. Peel The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  R. Lanfear,et al.  Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana , 2008, Proceedings of the National Academy of Sciences.

[52]  Johannes Jaeger,et al.  Regulative feedback in pattern formation: towards a general relativistic theory of positional information , 2008, Development.

[53]  Frank Jülicher,et al.  Delayed coupling theory of vertebrate segmentation , 2008, HFSP journal.

[54]  C. Desplan,et al.  Heads and tails: evolution of antero-posterior patterning in insects. , 2009, Biochimica et biophysica acta.

[55]  John Reinitz,et al.  Size regulation in the segmentation of Drosophila: interacting interfaces between localized domains of gene expression ensure robust spatial patterning. , 2009, Physical review letters.

[56]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[57]  David H. Sharp,et al.  Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors , 2009, PLoS Comput. Biol..

[58]  Johannes Jaeger,et al.  Gene Circuit Analysis of the Terminal Gap Gene huckebein , 2009, PLoS Comput. Biol..

[59]  John Reinitz,et al.  FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution , 2008, Nucleic Acids Res..

[60]  P. Dearden,et al.  Notch signaling does not regulate segmentation in the honeybee, Apis mellifera , 2010, Development Genes and Evolution.

[61]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[62]  Mónica A. García-Solache,et al.  A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. , 2010, Developmental biology.

[63]  Béla Novák,et al.  Systems-level feedback in cell-cycle control. , 2010, Biochemical Society transactions.

[64]  G. K. Davis,et al.  Phenotypic robustness conferred by apparently redundant transcriptional enhancers , 2010, Nature.

[65]  Michael Levine,et al.  Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo , 2011, Proceedings of the National Academy of Sciences.

[66]  John Reinitz,et al.  Mechanisms of gap gene expression canalization in the Drosophila blastoderm , 2011, BMC Systems Biology.

[67]  M. Fujioka,et al.  Regulation of a duplicated locus: Drosophila sloppy paired is replete with functionally overlapping enhancers. , 2012, Developmental biology.

[68]  Anton Crombach,et al.  Efficient Reverse-Engineering of a Developmental Gene Regulatory Network , 2012, PLoS Comput. Biol..

[69]  Francis Corson,et al.  Geometry, epistasis, and developmental patterning , 2012, Proceedings of the National Academy of Sciences.

[70]  Frank Jülicher,et al.  Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit , 2012, PLoS biology.

[71]  Paul François,et al.  Phenotypic models of evolution and development: geometry as destiny. , 2012, Current opinion in genetics & development.

[72]  James Briscoe,et al.  Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube , 2012, Cell.

[73]  Susan J. Brown,et al.  Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium , 2012, Wiley interdisciplinary reviews. Developmental biology.

[74]  G. Wagner,et al.  A model of developmental evolution: selection, pleiotropy and compensation. , 2012, Trends in ecology & evolution.

[75]  Luis G. Morelli,et al.  Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock , 2012, Development.

[76]  Andrew D. Peel,et al.  A Segmentation Clock with Two-Segment Periodicity in Insects , 2012, Science.

[77]  Anton Crombach,et al.  Medium-Throughput Processing of Whole Mount In Situ Hybridisation Experiments into Gene Expression Domains , 2012, PloS one.

[78]  N. Monk,et al.  The inheritance of process: a dynamical systems approach. , 2012, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[79]  Susan J. Brown,et al.  A segmentation clock operating in blastoderm and germband stages of Tribolium development , 2012, Development.

[80]  Anton Crombach,et al.  Classification of transient behaviours in a time-dependent toggle switch model , 2014, BMC Systems Biology.

[81]  K. Page,et al.  A gene regulatory motif that generates oscillatory or multiway switch outputs , 2013, Journal of The Royal Society Interface.

[83]  Julien O. Dubuis,et al.  Accurate measurements of dynamics and reproducibility in small genetic networks , 2013, Molecular systems biology.

[84]  Anton Crombach,et al.  Evolution of early development in dipterans: Reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae) , 2014, Biosyst..

[85]  A. Ay,et al.  Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves , 2014, Development.

[86]  Julien O. Dubuis,et al.  Morphogenesis at criticality , 2013, Proceedings of the National Academy of Sciences.

[87]  N. Monk,et al.  Bioattractors: dynamical systems theory and the evolution of regulatory processes , 2014, The Journal of physiology.

[88]  Susan J. Brown,et al.  Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium , 2014, PLoS genetics.

[89]  M. Grbic,et al.  Reversion of developmental mode in insects: evolution from long germband to short germband in the polyembrionic wasp Macrocentrus cingulum Brischke , 2014, Evolution & development.

[90]  Anton Crombach,et al.  Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita , 2014, eLife.

[91]  Karl R. Wotton,et al.  Maternal Co-ordinate Gene Regulation and Axis Polarity in the Scuttle Fly Megaselia abdita , 2015, PLoS genetics.

[92]  S. Hester,et al.  Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation , 2015, Nature Communications.

[93]  Paul François,et al.  Critical Timing without a Timer for Embryonic Development. , 2015, Biophysical journal.

[94]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[95]  James Sharpe,et al.  A Local, Self-Organizing Reaction-Diffusion Model Can Explain Somite Patterning in Embryos. , 2015, Cell systems.

[96]  Thomas Zichner,et al.  Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks , 2016, Current Biology.

[97]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos with Student Solutions Manual , 2016 .

[98]  Karl R. Wotton,et al.  Gap Gene Regulatory Dynamics Evolve along a Genotype Network , 2015, bioRxiv.

[99]  Zeba Wunderlich,et al.  Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. , 2016, Cell reports.

[100]  A. Chipman,et al.  Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms , 2016, Proceedings of the Royal Society B: Biological Sciences.

[101]  Paul François,et al.  Speed regulation of genetic cascades allows for evolvability in the body plan specification of insects , 2017, Proceedings of the National Academy of Sciences.

[102]  Erik Clark,et al.  Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation , 2017, bioRxiv.

[103]  Anton Crombach,et al.  Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression , 2016, bioRxiv.

[104]  Lewis Wolpert,et al.  The French Flag Problems A Contribution to the Discussion on Pattern Development and Regulation , 2017 .