Crystal structure of a Pumilio homology domain.

Puf proteins regulate translation and mRNA stability by binding sequences in their target RNAs through the Pumilio homology domain (PUM-HD), which is characterized by eight tandem copies of a 36 amino acid motif, the PUM repeat. We have solved the structure of the PUM-HD from human Pumilio1 at 1.9 A resolution. The structure reveals that the eight PUM repeats correspond to eight copies of a single, repeated structural motif. The PUM repeats pack together to form a right-handed superhelix that approximates a half doughnut. The distribution of side chains on the inner and outer faces of this half doughnut suggests that the inner face of the PUM-HD binds RNA while the outer face interacts with proteins such as Nanos, Brain Tumor, and cytoplasmic polyadenylation element binding protein.

[1]  R. Lehmann,et al.  Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. , 1992, Genes & development.

[2]  Robert D. Finn,et al.  Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins , 1999, Nucleic Acids Res..

[3]  The PUMILIO-RNA interaction: a single RNA-binding domain monomer recognizes a bipartite target sequence. , 1999, Biochemistry.

[4]  William I. Weis,et al.  Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin , 1997, Cell.

[5]  P. Casey,et al.  Crystal Structure of Protein Farnesyltransferase at 2.25 Angstrom Resolution , 1997, Science.

[6]  A. Kuspa,et al.  Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. , 1999, Development.

[7]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[8]  R. Lehmann,et al.  Localization of nanos RNA controls embryonic polarity , 1992, Cell.

[9]  Stanley Fields,et al.  A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line , 1997, Nature.

[10]  M. Wickens,et al.  CPEB proteins control two key steps in spermatogenesis in C. elegans. , 2000, Genes & development.

[11]  T. Creighton,et al.  Protein Folding , 1992 .

[12]  G. Struhl,et al.  Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos , 1989, Nature.

[13]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[14]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[15]  S. Strickland,et al.  Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. , 1997, Development.

[16]  I. Herskowitz,et al.  Post‐transcriptional regulation through the HO 3′‐UTR by Mpt5, a yeast homolog of Pumilio and FBF , 2001, The EMBO journal.

[17]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[18]  R. Lehmann,et al.  The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. , 1997, RNA.

[19]  R. Wharton,et al.  Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in drosophila embryos , 1995, Cell.

[20]  R. Setterquist,et al.  Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii , 1989, Journal of bacteriology.

[21]  Thomas C. Terwilliger,et al.  Reciprocal-space solvent flattening , 1999, Acta crystallographica. Section D, Biological crystallography.

[22]  R. Lehmann,et al.  The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. , 1991, Development.

[23]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[24]  G. Blobel,et al.  Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α , 1998, Cell.

[25]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[26]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[27]  Masashi Yamada,et al.  Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos , 1999, Nature Cell Biology.

[28]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[29]  R. Wharton,et al.  Recruitment of Nanos to hunchback mRNA by Pumilio. , 1999, Genes & development.

[30]  R. Wharton,et al.  The Pumilio RNA-binding domain is also a translational regulator. , 1998, Molecular cell.

[31]  Y Nagahama,et al.  Biochemical Identification of Xenopus Pumilio as a Sequence-specific Cyclin B1 mRNA-binding Protein That Physically Interacts with a Nanos Homolog, Xcat-2, and a Cytoplasmic Polyadenylation Element-binding Protein* , 2001, The Journal of Biological Chemistry.

[32]  R. Wharton,et al.  Drosophila Brain Tumor is a translational repressor. , 2001, Genes & development.

[33]  D. Curtis,et al.  A CCHC metal‐binding domain in Nanos is essential for translational regulation , 1997, The EMBO journal.

[34]  R Parker,et al.  The Puf3 protein is a transcript‐specific regulator of mRNA degradation in yeast , 2000, The EMBO journal.

[35]  Ruth Lehmann,et al.  Nanos is the localized posterior determinant in Drosophila , 1991, Cell.

[36]  P. Y. Chou,et al.  β-turns in proteins☆ , 1977 .

[37]  D. Tautz,et al.  Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. , 1994, Genetics.

[38]  R. Lehmann,et al.  Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo , 1987, Nature.

[39]  Douglas C. Rees,et al.  A leucine-rich repeat variant with a novel repetitive protein structural motif , 1996, Nature Structural Biology.

[40]  T. A. Graham,et al.  Crystal Structure of a β-Catenin/Tcf Complex , 2000, Cell.

[41]  A. Spradling,et al.  A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. , 1997, Development.

[42]  P. Macdonald,et al.  The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. , 1992, Development.

[43]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[44]  Brian A. Hemmings,et al.  The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs , 1999, Cell.

[45]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[46]  R. Lehmann,et al.  Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. , 1998, Development.

[47]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[48]  Marvin Wickens,et al.  NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans , 1999, Current Biology.

[49]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[50]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[51]  E Seifert,et al.  Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. , 1988, The EMBO journal.