Increased mitochondrial free Ca2+ during ischemia is suppressed, but not eliminated by, germline deletion of the mitochondrial Ca2+ uniporter.

[1]  B. O’Rourke,et al.  Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca2+ uptake , 2023, The Journal of biological chemistry.

[2]  K. Bennett,et al.  TMBIM5 is the Ca2+/H+ antiporter of mammalian mitochondria , 2022, EMBO reports.

[3]  K. Frauenknecht,et al.  TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy , 2022, Life Science Alliance.

[4]  S. Nadtochiy,et al.  Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation , 2022, bioRxiv.

[5]  E. Rugarli,et al.  Regulation of mitochondrial proteostasis by the proton gradient , 2021, bioRxiv.

[6]  G. Lippe,et al.  The mitochondrial permeability transition: Recent progress and open questions , 2021, The FEBS journal.

[7]  J. Elrod,et al.  Mitochondrial calcium exchange in physiology and disease. , 2021, Physiological reviews.

[8]  R. Balaban,et al.  Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. , 2021, Cell reports.

[9]  Guibo Sun,et al.  Targeting Calcium Homeostasis in Myocardial Ischemia/Reperfusion Injury: An Overview of Regulatory Mechanisms and Therapeutic Reagents , 2020, Frontiers in Pharmacology.

[10]  S. Matsuoka,et al.  Membrane current evoked by mitochondrial Na+–Ca2+ exchange in mouse heart , 2020, The Journal of Physiological Sciences.

[11]  E. Murphy,et al.  Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. , 2020, Circulation research.

[12]  R. Balaban,et al.  Perfused murine heart optical transmission spectroscopy using optical catheter and integrating sphere: Effects of ischemia/reperfusion. , 2019, Analytical biochemistry.

[13]  M. Drobizhev,et al.  Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators , 2019, Biophysical journal.

[14]  J. Molkentin,et al.  Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD , 2018, Science Advances.

[15]  F. Perocchi,et al.  Pharmacological modulation of mitochondrial calcium homeostasis , 2018, The Journal of physiology.

[16]  R. Balaban,et al.  Intracardiac light catheter for rapid scanning transmural absorbance spectroscopy of perfused myocardium: measurement of myoglobin oxygenation and mitochondria redox state. , 2017, American journal of physiology. Heart and circulatory physiology.

[17]  B. Kuster,et al.  Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. , 2017, Molecular cell.

[18]  S. Houser,et al.  The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability , 2017, Nature.

[19]  H. Rodríguez,et al.  Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events. , 2017, Analytical chemistry.

[20]  J. Seidman,et al.  AAV9 Delivery of shRNA to the Mouse Heart , 2016, Current protocols in molecular biology.

[21]  V. Mootha,et al.  The molecular era of the mitochondrial calcium uniporter , 2015, Nature Reviews Molecular Cell Biology.

[22]  Jianyi(Jay) Zhang,et al.  The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. , 2015, Cell reports.

[23]  S. Houser,et al.  The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. , 2015, Cell reports.

[24]  L. Blatter,et al.  Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. , 2015, Cardiovascular research.

[25]  V. Mootha,et al.  The uniporter: from newly identified parts to function. , 2014, Biochemical and biophysical research communications.

[26]  Shivendra G. Tewari,et al.  Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake , 2014, The Journal of physiology.

[27]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[28]  Satoshi Matsuoka,et al.  The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes , 2013, Scientific Reports.

[29]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[30]  R. Winslow,et al.  Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering , 2012, The Journal of general physiology.

[31]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[32]  E. Murphy,et al.  What makes the mitochondria a killer? Can we condition them to be less destructive? , 2011, Biochimica et biophysica acta.

[33]  A. Wlodawer,et al.  Crystallographic study of red fluorescent protein eqFP578 and its far‐red variant Katushka reveals opposite pH‐induced isomerization of chromophore , 2011, Protein science : a publication of the Protein Society.

[34]  R. Rizzuto,et al.  A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter , 2011, Nature.

[35]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[36]  C. Chinopoulos,et al.  Mitochondrial Ca2+ sequestration and precipitation revisited , 2010, The FEBS journal.

[37]  E. Griffiths,et al.  The ups and downs of mitochondrial calcium signalling in the heart. , 2010, Biochimica et biophysica acta.

[38]  Shin-Young Ryu,et al.  Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels , 2010, FEBS letters.

[39]  J. Zweier,et al.  Targeting calcium transport in ischaemic heart disease. , 2009, Cardiovascular research.

[40]  P. Pasdois,et al.  The role of the mitochondrial permeability transition pore in heart disease. , 2009, Biochimica et biophysica acta.

[41]  P. Bernardi,et al.  A CaPful of mechanisms regulating the mitochondrial permeability transition. , 2009, Journal of molecular and cellular cardiology.

[42]  E. Murphy,et al.  Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. , 2008, Physiological reviews.

[43]  Sean C. Smith,et al.  A structural basis for the pH-dependent increase in fluorescence efficiency of chromoproteins. , 2007, Journal of molecular biology.

[44]  C. Zazueta,et al.  Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post‐ischaemic functional recovery in rats in vivo , 2006, British journal of pharmacology.

[45]  J. Soler‐Soler,et al.  Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. , 2006, Cardiovascular research.

[46]  Shin-Young Ryu,et al.  Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. , 2005, Biochimica et biophysica acta.

[47]  D. Nicholls,et al.  The Integration of Mitochondrial Calcium Transport and Storage , 2004, Journal of bioenergetics and biomembranes.

[48]  S. Sheu,et al.  Identification of a Ryanodine Receptor in Rat Heart Mitochondria* , 2001, The Journal of Biological Chemistry.

[49]  M. Sosa-Torres,et al.  Inhibitory Properties of Ruthenium Amine Complexes on Mitochondrial Calcium Uptake , 1999, Journal of bioenergetics and biomembranes.

[50]  E. Griffiths Reversal of mitochondrial Na/Ca exchange during metabolic inhibition in rat cardiomyocytes , 1999, FEBS letters.

[51]  D. Bers,et al.  Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake into Mitochondria in Vitroand in Situ in Single Cardiac Myocytes* , 1998, The Journal of Biological Chemistry.

[52]  M. Stern,et al.  Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. , 1995, The Journal of physiology.

[53]  R. Ramasamy,et al.  Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning. , 1995, The American journal of physiology.

[54]  R. London,et al.  Amiloride delays the ischemia-induced rise in cytosolic free calcium. , 1991, Circulation research.

[55]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[56]  G K Radda,et al.  Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. , 1979, The Biochemical journal.

[57]  B. O’Rourke,et al.  Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes. , 2015, Journal of molecular and cellular cardiology.

[58]  C. Baines,et al.  Cell biology of ischemia/reperfusion injury. , 2012, International review of cell and molecular biology.

[59]  R. Jennings,et al.  Reducing lactate accumulation does not attenuate lethal ischemic injury in isolated perfused rat hearts. , 1996, The American journal of physiology.