Constrained weak-coupling superconductivity in multiband superconductors

We consider superconductivity in a system with $N$ Fermi surfaces, including intraband and interband effective electron-electron interactions. The effective interaction is described by an $N \times N$ matrix whose elements are assumed to be constant in thin momentum shells around each Fermi surface, giving rise to $s$-wave superconductivity. Starting with attractive intraband interactions in all $N$ bands, we show that too strong interband interactions are detrimental to sustaining $N$ nonzero components of the superconducting order parameter. We find similar results in systems with repulsive intraband interactions. The dimensionality reduction of the order-parameter space is given by the number of nonpositive eigenvalues of the interaction matrix. Using general models and models for superconducting transition metal dichalcogenides and iron pnictides frequently employed in the literature, we show that constraints must be imposed on the order parameter to ensure a lower bound on the free energy and that subsequent higher-order expansions around the global minimum are thermodynamically stable. We also demonstrate that similar considerations are necessary for unconventional pairing symmetries.

[1]  Haim,et al.  Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection , 2021, Physical Review B.

[2]  T. Palstra,et al.  Unconventional Fulde-Ferrell-Larkin-Ovchinnikov state in a two-dimensional Ising superconductor , 2022 .

[3]  A. Sudbø,et al.  Topological Superconductivity Mediated by Skyrmionic Magnons. , 2022, Physical review letters.

[4]  E. R. Margine,et al.  Electron-phonon coupling and spin fluctuations in the Ising superconductor NbSe_2 , 2022, npj Computational Materials.

[5]  Yi-Ming Wu,et al.  Superconductivity out of a non-Fermi liquid: Free energy analysis , 2022, Physical Review B.

[6]  Sol H. Jacobsen,et al.  High magnetic field superconductivity in a two-band superconductor , 2022, Physical Review B.

[7]  M. Grifoni,et al.  Two-bands Ising superconductivity from Coulomb interactions in monolayer NbSe2 , 2022, 2D Materials.

[8]  E. Yuzbashyan,et al.  Migdal-Eliashberg theory as a classical spin chain , 2022, Physical Review B.

[9]  Daniel Shaffer,et al.  Unconventional self-similar Hofstadter superconductivity from repulsive interactions , 2022, Nature communications.

[10]  E. Babaev,et al.  Demonstration of $\mathbb{C}P^2$ skyrmions in three-band superconductors by self-consistent solutions to a Bogoliubov-de Gennes model , 2022, 2204.05242.

[11]  E. Babaev,et al.  Symmetries, Length Scales, Magnetic Response and Skyrmion Chains in Nematic Superconductors , 2022, 2202.13674.

[12]  J. Linder,et al.  Going beyond the Chandrasekhar-Clogston limit in a flatband superconductor , 2021, Physical Review B.

[13]  Jian Wang,et al.  Theory of Hofstadter superconductors , 2021, Physical Review B.

[14]  F. Marsiglio,et al.  Functional-integral approach to Gaussian fluctuations in Eliashberg theory , 2020, Physical Review B.

[15]  D. Wickramaratne,et al.  Ising Superconductivity and Magnetism in NbSe2 , 2020, Physical Review X.

[16]  J. Wells,et al.  Phonon-mediated superconductivity in doped monolayer materials , 2019, Physical Review B.

[17]  Jian Kang,et al.  Crystalline nodal topological superconductivity and Bogolyubov Fermi surfaces in monolayer NbSe2 , 2019 .

[18]  M. Bobnar,et al.  Enhanced Tc and multiband superconductivity in the fully-gapped ReBe22 superconductor , 2019, New Journal of Physics.

[19]  A. Vagov,et al.  Crossband versus intraband pairing in superconductors: Signatures and consequences of the interplay , 2019, Physical Review B.

[20]  E. Babaev,et al.  Chiral p -wave superconductors have complex coherence and magnetic field penetration lengths , 2019, Physical Review B.

[21]  Feipeng Zheng,et al.  Electron-phonon coupling and the coexistence of superconductivity and charge-density wave in monolayer NbSe2 , 2019, Physical Review B.

[22]  A. Vagov,et al.  Screening of pair fluctuations in superconductors with coupled shallow and deep bands: A route to higher-temperature superconductivity , 2018, Physical Review B.

[23]  R. Fernandes,et al.  Unconventional Multiband Superconductivity in Bulk SrTiO_{3} and LaAlO_{3}/SrTiO_{3} Interfaces. , 2018, Physical review letters.

[24]  H. Steinberg,et al.  Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions , 2017, Nature Communications.

[25]  Xiaodong Xu,et al.  Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides , 2017, Nature Communications.

[26]  M. Iskin Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance , 2016, 1605.00470.

[27]  K. T. Law,et al.  Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides , 2016, Communications Physics.

[28]  F. Guinea,et al.  Enhanced superconductivity in atomically thin TaS2 , 2016, Nature Communications.

[29]  E. Babaev,et al.  Microscopically derived multi-component Ginzburg–Landau theories for s+is superconducting state , 2016, 1601.02227.

[30]  Alberto García,et al.  Quasiparticle spectra of 2 H -NbSe 2 : Two-band superconductivity and the role of tunneling selectivity , 2015 .

[31]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[32]  K. T. Law,et al.  Evidence for two-dimensional Ising superconductivity in gated MoS2 , 2015, Science.

[33]  M. Milošević,et al.  Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue , 2015, 1504.06995.

[34]  W. Grochala,et al.  Superconductivity in transition metals , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  K. T. Law,et al.  Possible topological superconducting phases of MoS2. , 2014, Physical review letters.

[36]  A. Sudbø,et al.  Phase transitions and anomalous normal state in superconductors with broken time reversal symmetry , 2014, 1401.5802.

[37]  Z. Huang,et al.  H-T Phase Diagram of Multi-component Superconductors with Frustrated Inter-component Couplings , 2013, 1309.1570.

[38]  B. Wilson,et al.  Time-reversal-symmetry-broken state in the BCS formalism for a multi-band superconductor , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  G. Fuchs,et al.  Ginzburg-Landau Analysis of the Critical Temperature and the Upper Critical Field for Three-Band Superconductors , 2013, 1306.6162.

[40]  C. Castellani,et al.  Leggett modes in iron-based superconductors as a probe of time-reversal symmetry breaking , 2013, 1306.5545.

[41]  S. Maiti,et al.  S+is state with broken time-reversal symmetry in Fe-based superconductors , 2013, 1302.2964.

[42]  F. Guinea,et al.  Interactions and superconductivity in heavily doped MoS2 , 2013, 1301.4836.

[43]  A Perali,et al.  High-temperature superfluidity in double-bilayer graphene. , 2012, Physical review letters.

[44]  F. Peeters,et al.  Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature , 2012, 1207.6297.

[45]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[46]  F. Peeters,et al.  Two-band superconductors: hidden criticality deep in the superconducting state. , 2012, Physical review letters.

[47]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[48]  C. Honerkamp,et al.  Multiband effects on superconducting instabilities driven by electron-electron interactions , 2011, 1111.1171.

[49]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[50]  V. Stanev Model of collective modes in three-band superconductors with repulsive interband interactions , 2011, 1108.2501.

[51]  E. Babaev,et al.  Length scales, collective modes, and type-1.5 regimes in three-band superconductors , 2011, 1107.4279.

[52]  X. Hu,et al.  Massless Leggett mode in three-band superconductors with time-reversal-symmetry breaking. , 2011, Physical review letters.

[53]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[54]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[55]  T. Yanagisawa,et al.  Chiral state in three-gap superconductors , 2010 .

[56]  R. Moessner,et al.  Theory of itinerant magnetic excitations in the spin-density-wave phase of iron-based superconductors , 2010, 1002.1668.

[57]  V. Stanev,et al.  Three-band superconductivity and the order parameter that breaks time-reversal symmetry , 2009, 0912.5214.

[58]  M. Vavilov,et al.  Momentum dependence and nodes of the superconducting gap in the iron pnictides , 2009, 0903.5547.

[59]  N. Nagaosa,et al.  Broken time-reversal symmetry in Josephson junction involving two-band superconductors , 2008, 0809.3343.

[60]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[61]  S. Sarma,et al.  Orbital fluctuation mechanism for superconductivity in iron-based compounds , 2008, 0805.2150.

[62]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[63]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[64]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[65]  C. S. D. Melo,et al.  Two-band superfluidity from the BCS to the BEC limit , 2006, cond-mat/0603601.

[66]  G. Kotliar,et al.  Multi-patch model for transport properties of cuprate superconductors , 2001, cond-mat/0111042.

[67]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[68]  C. Castellani,et al.  Two-gap model for underdoped cuprate superconductors , 1999, cond-mat/9912363.

[69]  A. Leggett Number-Phase Fluctuations in Two-Band Superconductors , 1966 .

[70]  K. Cheng Theory of Superconductivity , 1948, Nature.

[71]  K. Tamvakis Symmetries , 2019, Undergraduate Texts in Physics.