Rayleigh quotient minimization method for symmetric eigenvalue problems

In this paper, we present a new method, which is referred to as the Rayleigh quotient minimization method, for computing one extreme eigenpair of symmetric matrices. This method converges globally and attains cubic convergence rate locally. In addition, inexact implementations and its numerical stability of the Rayleigh quotient minimization method are explored. Finally, we use numerical experiments to demonstrate the convergence properties and show the competitiveness of the new method for solving symmetric eigenvalue problems.

[1]  M. Hestenes,et al.  A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix , 1951 .

[2]  J. F. Price,et al.  An effective algorithm for minimization , 1967 .

[3]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[4]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[5]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[6]  Ronald B. Morgan,et al.  Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..

[7]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[8]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[9]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[10]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[11]  Y. Saad,et al.  Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods , 1998 .

[12]  Gerard L. G. Sleijpen,et al.  Alternative correction equations in the Jacobi-Davidson method , 1999, Numer. Linear Algebra Appl..

[13]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[14]  Gene H. Golub,et al.  An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  Evgueni E. Ovtchinnikov Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems , 2006, SIAM J. Numer. Anal..

[17]  E. Ovtchinnikov Cluster robustness of preconditioned gradient subspace iteration eigensolvers , 2006 .

[18]  Yunkai Zhou,et al.  Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates , 2006, Numer. Linear Algebra Appl..

[19]  Gang Wu,et al.  A thick-restarted block Arnoldi algorithm with modified Ritz vectors for large eigenproblems , 2010, Comput. Math. Appl..

[20]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[21]  Shuai Jian A block preconditioned steepest descent method for symmetric eigenvalue problems , 2013, Appl. Math. Comput..

[22]  Z. Bai,et al.  On local quadratic convergence of inexact simplified Jacobi–Davidson method , 2017 .

[23]  Zhong-Zhi Bai,et al.  On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems , 2017, Appl. Math. Lett..

[24]  Cun-Qiang Miao A Filtered-Davidson Method for Large Symmetric Eigenvalue Problems , 2017 .

[25]  Cun-Qiang Miao,et al.  Filtered Krylov-like sequence method for symmetric eigenvalue problems , 2018, Numerical Algorithms.

[26]  Cun-Qiang Miao,et al.  Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation , 2018, J. Comput. Appl. Math..

[27]  Shuai Jian,et al.  On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems , 2019, Comput. Math. Appl..