Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach
暂无分享,去创建一个
[1] S. Mallat,et al. Adaptive covariance estimation of locally stationary processes , 1998 .
[2] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[3] Douglas W. Nychka,et al. Statistical models for monitoring and regulating ground‐level ozone , 2005 .
[4] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[5] D. Nychka,et al. Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .
[6] Noel A Cressie,et al. Combining regional climate model output via a multivariate Markov random field model , 2007 .
[7] M. Stein,et al. Estimating deformations of isotropic Gaussian random fields on the plane , 2008, 0804.0723.
[8] N. Cressie,et al. Combining Ensembles of Regional Climate Model Output via a Multivariate Markov Random Field Model , 2008 .
[9] Yazhen Wang. Function estimation via wavelet shrinkage for long-memory data , 1996 .
[10] A. Wood,et al. Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .
[11] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[12] Christopher J Paciorek,et al. Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.
[13] J. Andrew Royle,et al. Multiresolution models for nonstationary spatial covariance functions , 2002 .
[14] L. Shepp,et al. A Statistical Model for Positron Emission Tomography , 1985 .
[15] Klaus Nordhausen,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .
[16] Montserrat Fuentes,et al. A New Class of Nonstationary Spatial Models , 2001 .
[17] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[18] J. D. Wilson,et al. A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography , 1990 .
[19] A.H. Tewfik,et al. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[20] S. Mallat. A wavelet tour of signal processing , 1998 .
[21] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[22] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[23] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[24] I. Johnstone. WAVELET SHRINKAGE FOR CORRELATED DATA AND INVERSE PROBLEMS: ADAPTIVITY RESULTS , 1999 .
[25] G. C. Wei,et al. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .
[26] P. Guttorp,et al. Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .
[27] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[28] E. Thompson,et al. Monte Carlo estimation of variance component models for large complex pedigrees. , 1991, IMA journal of mathematics applied in medicine and biology.
[29] Stéphane Mallat,et al. A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .
[30] Montserrat Fuentes,et al. A high frequency kriging approach for non‐stationary environmental processes , 2001 .
[31] D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .
[32] David Higdon,et al. Non-Stationary Spatial Modeling , 2022, 2212.08043.
[33] M. K. Kwong,et al. W-matrices, nonorthogonal multiresolution analysis, and finite signals of arbitrary length , 1994 .
[34] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.