Using the maximum Mutual Information criterion to textural Feature Selection for satellite image classification

This paper presents and evaluates the use of the maximum mutual information criterion to textural feature selection for satellite image classification. Our approach is based on a recent work of Mutual Information Feature Selector Algorithm. The effectiveness of the proposed approach is evaluated on real data. In fact, the textural features are extracted using the cooccurrence matrix from two forest zones of SPOT HRV(XS) image in the region of Rabat, Morocco. The experimental tests of this study prove that the proposed approach gives a better performance for satellite image classification than classical methods such as principal components analysis (PCA) and linear discriminant analysis (LDA). The classifier used in this work is the support vectors machine (SVM).

[1]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  F. Ade,et al.  Characterization of textures by ‘Eigenfilters’ , 1983 .

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[6]  Kidiyo Kpalma,et al.  Apport comparatif de la texture en segmentation d'image SPOT : application à la forêt de Paimpont (I. & V.) , 1993 .

[7]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[8]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[9]  T. J. Stonham,et al.  Unsupervised texture segmentation by Hebbian learnt cortical cells , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[10]  Stéphane Bonnevay Extraction de caractéristiques de texture par codages des extrema de gris et traitement prétopologique des images , 1997 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Christophe Rosenberger,et al.  Mise en oeuvre d'un système adaptatif de segmentation d'images , 1999 .

[13]  Xiaoou Tang,et al.  Optical and Sonar Image Classification: Wavelet Packet Transform vs Fourier Transform , 2000, Comput. Vis. Image Underst..

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Chong-Ho Choi,et al.  Input feature selection for classification problems , 2002, IEEE Trans. Neural Networks.

[16]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[17]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Xiaoming Xu,et al.  A Wrapper for Feature Selection Based on Mutual Information , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  Mark S. Nixon,et al.  Gait Feature Subset Selection by Mutual Information , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[21]  Barry R. Masters,et al.  Digital Image Processing, Third Edition , 2009 .

[22]  A. Hammouch,et al.  Textural Feature Selection based Mutual Information , .