Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2

SUMMARY: Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. SWI offers a unique contrast, different from spin attenuation, T1, T2, and T2* (see Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1). In this clinical review (Part 2), we present a variety of neurovascular and neurodegenerative disease applications for SWI, covering trauma, stroke, cerebral amyloid angiopathy, venous anomalies, multiple sclerosis, and tumors. We conclude that SWI often offers complementary information valuable in the diagnosis and potential treatment of patients with neurologic disorders.

[1]  R. Grossman,et al.  Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging , 2009, Journal of magnetic resonance imaging : JMRI.

[2]  Sandeep Mittal,et al.  Identification of calcification with MRI using susceptibility‐weighted imaging: A case study , 2009, Journal of magnetic resonance imaging : JMRI.

[3]  E. Haacke,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1 , 2008, American Journal of Neuroradiology.

[4]  Marco Rovaris,et al.  Morphology and evolution of cortical lesions in multiple sclerosis. A longitudinal MRI study , 2008, NeuroImage.

[5]  Yang Xuan,et al.  MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge‐Weber Syndrome , 2008, Journal of magnetic resonance imaging : JMRI.

[6]  Y. Chan,et al.  Superior sagittal sinus thrombosis: subtle signs on neuroimaging. , 2008, Annals of the Academy of Medicine, Singapore.

[7]  D. Birchall,et al.  T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation , 2008, Neurology.

[8]  Marguerite Wieler,et al.  Midbrain iron content in early Parkinson disease , 2008, Neurology.

[9]  R. Spetzler,et al.  Developmental venous anomaly, cavernous malformation, and capillary telangiectasia: spectrum of a single disease , 2008, Acta Neurochirurgica.

[10]  Allen W. Brown,et al.  Congenital and acquired brain injury. 1. Epidemiology, pathophysiology, prognostication, innovative treatments, and prevention. , 2008, Archives of physical medicine and rehabilitation.

[11]  Daniel B. Vigneron,et al.  Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases , 2008, NeuroImage.

[12]  E. Haacke,et al.  Susceptibility-Weighted MR Imaging: A Review of Clinical Applications in Children , 2008, American Journal of Neuroradiology.

[13]  E. Gasparetto,et al.  Susceptibility-Weighted Imaging for the Evaluation of Patients with Familial Cerebral Cavernous Malformations: A Comparison with T2-Weighted Fast Spin-Echo and Gradient-Echo Sequences , 2008, American Journal of Neuroradiology.

[14]  D. Kido,et al.  Mineralization of the Deep Gray Matter with Age: A Retrospective Review with Susceptibility-Weighted MR Imaging , 2008, American Journal of Neuroradiology.

[15]  James P. Larsen,et al.  Susceptibility-Weighted Magnetic Resonance Imaging in the Evaluation of Dementia , 2015, Radiology case reports.

[16]  A. Triquenot-Bagan,et al.  [Cerebral venous thrombosis]. , 2013, La Revue du praticien.

[17]  Chandrasekharan Kesavadas,et al.  Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review , 2008, Neuroradiology.

[18]  M. Vikkula,et al.  Genetic causes of vascular malformations. , 2007, Human molecular genetics.

[19]  T. Neumann-Haefelin,et al.  MRI-Based and CT-Based Thrombolytic Therapy in Acute Stroke Within and Beyond Established Time Windows: An Analysis of 1210 Patients , 2007, Stroke.

[20]  Toshinori Hirai,et al.  Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. , 2007, Academic radiology.

[21]  Carlo Ciulla,et al.  Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain , 2007, Journal of magnetic resonance imaging : JMRI.

[22]  L. Tassi,et al.  Clinical, magnetic resonance imaging, and genetic study of 5 Italian families with cerebral cavernous malformation. , 2007, Archives of neurology.

[23]  E. Haacke,et al.  Multimodality imaging of cortical and white matter abnormalities in Sturge-Weber syndrome. , 2007, AJNR. American journal of neuroradiology.

[24]  C. Miller,et al.  Glioblastoma: Morphologic and molecular genetic diversity , 2007 .

[25]  E Mark Haacke,et al.  In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. , 2007, Magnetic Resonance Imaging.

[26]  E M Haacke,et al.  Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. , 2007, AJNR. American journal of neuroradiology.

[27]  J. Pickard,et al.  Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. , 2007, Journal of neurotrauma.

[28]  A. Comi Update on Sturge-Weber syndrome: diagnosis, treatment, quantitative measures, and controversies. , 2007, Lymphatic research and biology.

[29]  A. C. White Jr.,et al.  Advances in the diagnosis and management of neurocysticercosis , 2006, Expert review of anti-infective therapy.

[30]  Stephen Ashwal,et al.  Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. , 2006, Archives of physical medicine and rehabilitation.

[31]  Jaladhar Neelavalli,et al.  Susceptibility‐weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses , 2006, Journal of magnetic resonance imaging : JMRI.

[32]  C. Sarkar,et al.  Angiogenic patterns and their quantitation in high grade astrocytic tumors , 2006, Journal of Neuro-Oncology.

[33]  J. Reichenbach,et al.  Contrast-Enhanced, High-Resolution, Susceptibility-Weighted Magnetic Resonance Imaging of the Brain: Dose-Dependent Optimization At 3 Tesla and 1.5 Tesla In Healthy Volunteers , 2006, Investigative radiology.

[34]  Reeti Tandon,et al.  High-field Magnetic Resonance Imaging of Brain Iron in Alzheimer Disease , 2006, Topics in magnetic resonance imaging : TMRI.

[35]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[36]  A. Thrift,et al.  Cerebrovascular disease and dementia. , 2005, Drugs of today.

[37]  Jaladhar Neelavalli,et al.  Clinical applications of neuroimaging with susceptibility‐weighted imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[38]  C. J. Wall,et al.  Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. , 2005, Pediatric neurology.

[39]  J R Reichenbach,et al.  High Resolution Susceptibility Weighted MR-Imaging of Brain Tumors during the Application of a Gaseous Agent , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[40]  J. Reichenbach,et al.  Magnetic susceptibility-weighted MR phase imaging of the human brain. , 2005, AJNR. American journal of neuroradiology.

[41]  W. Heiss,et al.  Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. , 2005, Archives of neurology.

[42]  R. Tadmor,et al.  MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral calcification , 1994, Journal of Neurology.

[43]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[44]  O. Seror,et al.  L'imagerie de susceptibilité magnétique: Théorie et applications , 2004 .

[45]  E Mark Haacke,et al.  Reliability in detection of hemorrhage in acute stroke by a new three‐dimensional gradient recalled echo susceptibility‐weighted imaging technique compared to computed tomography: A retrospective study , 2004, Journal of magnetic resonance imaging : JMRI.

[46]  N. Nighoghossian,et al.  Contribution of Susceptibility-Weighted Imaging to Acute Stroke Assessment , 2004, Stroke.

[47]  C. J. Wall,et al.  Diffuse axonal injury in children: Clinical correlation with hemorrhagic lesions , 2004, Annals of neurology.

[48]  Eric E. Smith,et al.  Hemorrhage Burden Predicts Recurrent Intracerebral Hemorrhage After Lobar Hemorrhage , 2004, Stroke.

[49]  Petra Schmalbrock,et al.  Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. , 2004, AJNR. American journal of neuroradiology.

[50]  R. Gonzalez,et al.  Magnetic Resonance Imaging Improves Detection of Intracerebral Hemorrhage Over Computed Tomography After Intra-Arterial Thrombolysis , 2004, Stroke.

[51]  S. Warach,et al.  Multiple Cerebral Microbleeds: Mri Marker of a Diffuse Hemorrhage–Prone State , 2004, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[52]  E. Haacke,et al.  [Susceptibility weighted imaging. Theory and applications]. , 2004, Journal de radiologie.

[53]  W. Kaiser,et al.  Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography , 2004, Pediatric Radiology.

[54]  S. Furui,et al.  MRI appearances of calcified regions within intracranial tumours , 2004, Neuroradiology.

[55]  E Mark Haacke,et al.  Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. , 2003, Radiology.

[56]  John F Schenck,et al.  Magnetic resonance imaging of brain iron , 2003, Journal of the Neurological Sciences.

[57]  R. Kummer MRI: The New Gold Standard for Detecting Brain Hemorrhage? , 2002 .

[58]  A. Demchuk,et al.  Microbleeding on MRI as a marker for hemorrhage after stroke thrombolysis. , 2002, Stroke.

[59]  S. Warach,et al.  The hypointense MCA sign. , 2002, Neurology.

[60]  J C Froment,et al.  Old Microbleeds Are a Potential Risk Factor for Cerebral Bleeding After Ischemic Stroke: A Gradient-Echo T2*-Weighted Brain MRI Study , 2002, Stroke.

[61]  J. Provenzale,et al.  Hypointense thrombus on T2-weighted MR imaging: a potential pitfall in the diagnosis of dural sinus thrombosis. , 2002, European journal of radiology.

[62]  Fernando Vinuela,et al.  Magnetic Resonance Imaging Detection of Microbleeds Before Thrombolysis: An Emerging Application , 2002, Stroke.

[63]  R. von Kummer MRI: the new gold standard for detecting brain hemorrhage? , 2002, Stroke.

[64]  H. Urbach,et al.  Perfusion and molecular diffusion-weighted MR imaging of the brain: In vivo assessment of tissue alteration in cerebral ischemia , 2002, Amino Acids.

[65]  P. Trouillas,et al.  MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences , 2001, Neuroradiology.

[66]  M. Behen,et al.  Sturge–Weber syndrome: Correlation between clinical course and FDG PET findings , 2001 .

[67]  J. R. Reichenbach,et al.  High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique , 2001, Neuroradiology.

[68]  Z. Qian,et al.  Brain iron transport and neurodegeneration. , 2001, Trends in molecular medicine.

[69]  F Barkhof,et al.  MR venography of multiple sclerosis. , 2000, AJNR. American journal of neuroradiology.

[70]  S. Ludwin Understanding multiple sclerosis: Lessons from pathology , 2000, Annals of neurology.

[71]  R Bakshi,et al.  MRI T2 shortening (‘black T2’) in multiple sclerosis: frequency, location, and clinical correlation , 2000, Neuroreport.

[72]  J W Langston,et al.  The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. , 1999, Magnetic resonance imaging.

[73]  R. Töpper,et al.  Clinical significance of intracranial developmental venous anomalies , 1999, Journal of neurology, neurosurgery, and psychiatry.

[74]  W. Lin,et al.  MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. , 1999, AJNR. American journal of neuroradiology.

[75]  W Hacke,et al.  A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. , 1999, Stroke.

[76]  P Kapeller,et al.  Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. , 1999, AJNR. American journal of neuroradiology.

[77]  K. Jellinger,et al.  The Role of Iron in Neurodegeneration , 1999, Drugs & aging.

[78]  Z. Qian,et al.  Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders , 1998, Brain Research Reviews.

[79]  A. Barkovich,et al.  Sturge-Weber syndrome with no leptomeningeal enhancement on MRI , 1998, Neuroradiology.

[80]  B. Maria,et al.  Central Nervous System Perfusion and Metabolism Abnormalities in Sturge-Weber Syndrome , 1997, Journal of child neurology.

[81]  R I Grossman,et al.  Gliomas: correlation of magnetic susceptibility artifact with histologic grade. , 1997, Radiology.

[82]  J. Weissenbach,et al.  Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia , 1996, Nature.

[83]  C. Tzourio,et al.  Long-term prognosis in cerebral venous thrombosis. Follow-up of 77 patients. , 1996, Stroke.

[84]  K F Swaiman,et al.  Hallervorden-Spatz syndrome and brain iron metabolism. , 1991, Archives of neurology.

[85]  C. W. Adams,et al.  PERIVENTRICULAR LESIONS IN MULTIPLE SCLEROSIS: THEIR PERIVENOUS ORIGIN AND RELATIONSHIP TO GRANULAR EPENDYMITIS , 1987, Neuropathology and applied neurobiology.

[86]  D. Norman,et al.  Gd-DTPA in clinical MR of the brain: 1. Intraaxial lesions. , 1986, AJR. American journal of roentgenology.

[87]  B. Rosen,et al.  The detection of intracranial calcifications by MR. , 1986, AJNR. American journal of neuroradiology.

[88]  R Felix,et al.  Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. , 1985, Magnetic resonance imaging.

[89]  T. Fog The topography of plaques in multiple sclerosis with special reference to cerebral plaques. , 1965, Acta neurologica Scandinavica. Supplementum.