A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case

In this paper, we propose a discretization for the (nonlinearized) compressible Stokes problem with a linear equation of state $\rho=p$, based on Crouzeix-Raviart elements. The approximation of the momentum balance is obtained by usual finite element techniques. Since the pressure is piecewise constant, the discrete mass balance takes the form of a finite volume scheme, in which we introduce an upwinding of the density, together with two additional stabilization terms. We prove {\em a priori} estimates for the discrete solution, which yields its existence by a topological degree argument, and then the convergence of the scheme to a solution of the continuous problem.

[1]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[2]  Raphaele Herbin,et al.  An unconditionnally stable pressure correction scheme for compressible barotropic Navier-Stokes equations , 2007, 0710.2987.

[3]  Raphaele Herbin,et al.  Mathematical Modelling and Numerical Analysis an Entropy Preserving Finite-element/finite-volume Pressure Correction Scheme for the Drift-flux Model , 2022 .

[4]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[5]  R. Bruce Kellogg,et al.  A Penalized Finite-Element Method for a Compressible Stokes System , 1997 .

[6]  Raphaèle Herbin,et al.  A discretization of phase mass balance in fractional step algorithms for the drift-flux model , 2017 .

[7]  R. Bruce Kellogg,et al.  A finite element method for the compressible Stokes equations , 1996 .

[8]  Raphaèle Herbin,et al.  Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE , 2013 .

[9]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..

[10]  Alberto Valli,et al.  On the existence of stationary solutions to compressible Navier-Stokes equations , 1987 .

[11]  T. Gallouët,et al.  AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .

[12]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[13]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[14]  Jae Ryong Kweon,et al.  An optimal order convergence for a weak formulation of the compressible Stokes system with inflow boundary condition , 2000, Numerische Mathematik.

[15]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[16]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[17]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[18]  Pavel B. Bochev,et al.  Analysis and computation of least‐squares methods for a compressible Stokes problem , 2003 .

[19]  Philippe Angot,et al.  Une méthode de pénalité-projection pour les écoulements dilatables , 2008 .

[20]  A. Novotný,et al.  Introduction to the Mathematical Theory of Compressible Flow , 2004 .

[21]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[22]  R. Temam Navier-Stokes Equations , 1977 .

[23]  Jae Ryong Kweon,et al.  Optimal error estimate for a mixed finite element method for compressible Navier--Stokes system , 2003 .

[24]  Antonín Novotný,et al.  Introduction to the mathematical theory of compressible flow , 2004 .

[25]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[26]  James H. Bramble A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS , 2003 .

[27]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[28]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .