A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case
暂无分享,去创建一个
Thierry Gallouët | Raphaèle Herbin | Robert Eymard | Jean-Claude Latché | R. Eymard | T. Gallouët | R. Herbin | J. Latché
[1] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[2] Raphaele Herbin,et al. An unconditionnally stable pressure correction scheme for compressible barotropic Navier-Stokes equations , 2007, 0710.2987.
[3] Raphaele Herbin,et al. Mathematical Modelling and Numerical Analysis an Entropy Preserving Finite-element/finite-volume Pressure Correction Scheme for the Drift-flux Model , 2022 .
[4] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[5] R. Bruce Kellogg,et al. A Penalized Finite-Element Method for a Compressible Stokes System , 1997 .
[6] Raphaèle Herbin,et al. A discretization of phase mass balance in fractional step algorithms for the drift-flux model , 2017 .
[7] R. Bruce Kellogg,et al. A finite element method for the compressible Stokes equations , 1996 .
[8] Raphaèle Herbin,et al. Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE , 2013 .
[9] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..
[10] Alberto Valli,et al. On the existence of stationary solutions to compressible Navier-Stokes equations , 1987 .
[11] T. Gallouët,et al. AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .
[12] Pierre-Louis Lions,et al. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .
[13] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[14] Jae Ryong Kweon,et al. An optimal order convergence for a weak formulation of the compressible Stokes system with inflow boundary condition , 2000, Numerische Mathematik.
[15] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[16] Eduard Feireisl,et al. Dynamics of Viscous Compressible Fluids , 2004 .
[17] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[18] Pavel B. Bochev,et al. Analysis and computation of least‐squares methods for a compressible Stokes problem , 2003 .
[19] Philippe Angot,et al. Une méthode de pénalité-projection pour les écoulements dilatables , 2008 .
[20] A. Novotný,et al. Introduction to the Mathematical Theory of Compressible Flow , 2004 .
[21] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[22] R. Temam. Navier-Stokes Equations , 1977 .
[23] Jae Ryong Kweon,et al. Optimal error estimate for a mixed finite element method for compressible Navier--Stokes system , 2003 .
[24] Antonín Novotný,et al. Introduction to the mathematical theory of compressible flow , 2004 .
[25] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[26] James H. Bramble. A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS , 2003 .
[27] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[28] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .