Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations

Given a simple undirected graph, the problem of finding a maximum subset of vertices satisfying a nontrivial, interesting property Π that is hereditary on induced subgraphs, is known to be NP-hard. Many well-known graph properties meet the above conditions, making the problem widely applicable. This paper proposes a general purpose exact algorithmic framework to solve this problem and investigates key algorithm design and implementation issues that are helpful in tailoring the general framework for specific graph properties. The performance of the algorithms so derived for the maximums-plex and the maximums-defective clique problems, which arise in network-based data mining applications, is assessed through a computational study.

[1]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[2]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[3]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[6]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[7]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[8]  John Scott What is social network analysis , 2010 .

[9]  N. Sloane Unsolved Problems in Graph Theory Arising from the Study of Codes , 1989 .

[10]  Keshab K. Parhi,et al.  Distributed scheduling of broadcasts in a radio network , 1989, IEEE INFOCOM '89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies.

[11]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[12]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[13]  John Scott Social Network Analysis , 1988 .

[14]  Panos M. Pardalos,et al.  Test case generators and computational results for the maximum clique problem , 1993, J. Glob. Optim..

[15]  M. Frick A Survey of (m, k)-Colorings , 1993 .

[16]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[17]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[18]  Dhiraj K. Pradhan,et al.  A Cluster-based Approach for Routing in Ad-Hoc Networks , 1995, Symposium on Mobile and Location-Independent Computing.

[19]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[20]  Thomas Schiex,et al.  Russian Doll Search for Solving Constraint Optimization Problems , 1996, AAAI/IAAI, Vol. 1.

[21]  L. Cowen,et al.  Defective coloring revisited , 1997 .

[22]  David R. Wood,et al.  An algorithm for finding a maximum clique in a graph , 1997, Oper. Res. Lett..

[23]  Edward C. Sewell,et al.  A Branch and Bound Algorithm for the Stability Number of a Sparse Graph , 1998, INFORMS J. Comput..

[24]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[25]  Patric R. J. Östergård,et al.  A New Algorithm for the Maximum-Weight Clique Problem , 1999, Electron. Notes Discret. Math..

[26]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[27]  N.J.A. Sloane,et al.  On Single-Deletion-Correcting Codes , 2002, math/0207197.

[28]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[29]  J. Rothberg,et al.  Gaining confidence in high-throughput protein interaction networks , 2004, Nature Biotechnology.

[30]  Luitpold Babel Finding maximum cliques in arbitrary and in special graphs , 2005, Computing.

[31]  Egon Balas,et al.  Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring , 1996, Algorithmica.

[32]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[33]  Wilbert E. Wilhelm,et al.  Clique-detection models in computational biochemistry and genomics , 2006, Eur. J. Oper. Res..

[34]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[35]  Mark Gerstein,et al.  Predicting interactions in protein networks by completing defective cliques , 2006, Bioinform..

[36]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[37]  Benjamin McClosky,et al.  Independence Systems and Stable Set Relaxations , 2008 .

[38]  Illya V. Hicks,et al.  The Co-2-plex Polytope and Integral Systems , 2009, SIAM J. Discret. Math..

[39]  Balabhaskar Balasundaram,et al.  Graph theoretic generalizations of clique: optimization and extensions , 2009 .

[40]  Vesa P. Vaskelainen,et al.  Russian doll search algorithms for discrete optimization problems , 2010 .

[41]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[42]  Patric R. J. Östergård,et al.  Russian doll search for the Steiner triple covering problem , 2011, Optim. Lett..

[43]  Illya V. Hicks,et al.  Combinatorial algorithms for the maximum k-plex problem , 2012, J. Comb. Optim..

[44]  Rolf Niedermeier,et al.  Exact combinatorial algorithms and experiments for finding maximum k-plexes , 2012, J. Comb. Optim..

[45]  Sergiy Butenko,et al.  On clique relaxation models in network analysis , 2013, Eur. J. Oper. Res..

[46]  Balabhaskar Balasundaram,et al.  Graph Theoretic Clique Relaxations and Applications , 2013 .