Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control

This paper proposes a novel robust fractional-order sliding mode approach for the synchronization of two fractional-order chaotic systems in the presence of system parameter uncertain and external disturbance. An adaptive sliding mode controller is constructed resorted to the designed fractional integral type sliding surface. Based on the Lyapunov stability theorem, the stability of the closed error system is proved. Finally, a numerical simulation is performed to illustrate the effectiveness of the proposed method.

[1]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[2]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[3]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[4]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[5]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[6]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[7]  Her-Terng Yau,et al.  Design of sliding mode controller for Lorenz chaotic system with nonlinear input , 2004 .

[8]  Dequan Li,et al.  Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control , 2010 .

[9]  Alain Oustaloup,et al.  Robust Speed Control of a Low Damped Electromechanical System Based on CRONE Control: Application to a Four Mass Experimental Test Bench , 2004 .

[10]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[11]  José António Tenreiro Machado,et al.  Control of a heat diffusion system through a fractional order nonlinear algorithm , 2010, Comput. Math. Appl..

[12]  José António Tenreiro Machado,et al.  Fractional calculus applications in signals and systems , 2006, Signal Processing.

[13]  Junwei Wang,et al.  Designing synchronization schemes for chaotic fractional-order unified systems , 2006 .

[14]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[15]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .

[16]  Jianbing Hu,et al.  Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems , 2010 .

[17]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[18]  Ahmed M. A. El-Sayed,et al.  On the fractional-order logistic equation , 2007, Appl. Math. Lett..

[19]  Kehui Sun,et al.  Chaos synchronization between two different fractional-order hyperchaotic systems , 2011 .

[20]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[21]  Juebang Yu,et al.  Chaos in the fractional order periodically forced complex Duffing’s oscillators , 2005 .

[22]  Elena Grigorenko,et al.  Erratum: Chaotic Dynamics of the Fractional Lorenz System [Phys. Rev. Lett.91, 034101 (2003)] , 2006 .

[23]  E. Ahmed,et al.  On fractional order differential equations model for nonlocal epidemics , 2007, Physica A: Statistical Mechanics and its Applications.

[24]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[25]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[26]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[27]  Reza Ghaderi,et al.  Sliding mode synchronization of an uncertain fractional order chaotic system , 2010, Comput. Math. Appl..

[28]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[29]  Yongguang Yu,et al.  The synchronization of fractional-order Rössler hyperchaotic systems☆ , 2008 .

[30]  Thomas J. Anastasio,et al.  The fractional-order dynamics of brainstem vestibulo-oculomotor neurons , 1994, Biological Cybernetics.