A new discrete Kirchhoff-Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part II: An extended DKQ element for thick-plate bending analysis

This is the second part of a two-part paper on plate bending elements with shear effects included. This paper presents a new four-node, 12-d.o.f. quadrilateral plate bending element valid for the analysis of thick to thin plates. The element called DKMQ, has a proper rank (contains no spurious zero-energy modes), passes the patch test for thin and thick plates in an arbitrary mesh and is free of shear locking. Very good results have been obtained for thin and thick plates by the element. An extended DKT element for thick-plate bending analysis is evaluated in Part I.19

[1]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[2]  J. Aalto From Kirchhoff to Mindlin plate elements , 1988 .

[3]  J. A. Stricklin,et al.  A rapidly converging triangular plate element , 1969 .

[4]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[5]  L. Morley Skew plates and structures , 1963 .

[6]  V. L. Salerno,et al.  Effect of Shear Deformations on the Bending of Rectangular Plates , 1960 .

[7]  G. Dhatt,et al.  A new triangular discrete Kirchhoff plate/shell element , 1986 .

[8]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[9]  Irwan Katili,et al.  On a simple triangular reissner/mindlin plate element based on incompatible modes and discrete constraints , 1992 .

[10]  G. Dhatt,et al.  An efficient triangular shell element , 1970 .

[11]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[12]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[13]  Abdur Razzaque,et al.  Program for triangular bending elements with derivative smoothing , 1973 .

[14]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .

[15]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[16]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[17]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[18]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[19]  J. Kirkhope,et al.  An alternative explicit formulation for the DKT plate-bending element , 1985 .

[20]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[21]  Gangan Prathap,et al.  An optimally integrated four‐node quadrilateral plate bending element , 1983 .

[22]  O. C. Zienkiewicz,et al.  Plate bending elements with discrete constraints: New triangular elements , 1990 .

[23]  O. C. Zienkiewicz,et al.  A refined higher-order C° plate bending element , 1982 .

[24]  Irwan Katili,et al.  A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis , 1993 .

[25]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[26]  Jean-Louis Batoz,et al.  An explicit formulation for an efficient triangular plate‐bending element , 1982 .