The circular chromatic number of series-parallel graphs of large odd girth

Suppose G is a series-parallel graph. We prove that if G has odd girth at least 6k - 1 then χc(G) ≤ 8k/(4k - 1); if G has odd girth at least 6k + 1 then χc(G) ≤ (4k + 1)/2k; if G has odd girth at least 6k + 3 then χc(G) ≤ (4k + 3)/(2k + 1).

[1]  Xuding Zhu,et al.  The circular chromatic number of series-parallel graphs , 2000, Journal of Graph Theory.

[2]  Xuding Zhu Star chromatic numbers and products of graphs , 1992, J. Graph Theory.

[3]  D. A. Youngs 4-chromatic projective graphs , 1996 .

[4]  Xuding Zhu,et al.  On bounded treewidth duality of graphs , 1996 .

[5]  Pavol Hell,et al.  A note on the star chromatic number , 1990, J. Graph Theory.

[6]  Xuding Zhu Planar Graphs with Circular Chromatic Numbers between 3 and 4 , 1999, J. Comb. Theory, Ser. B.

[7]  Xuding Zhu,et al.  Circular chromatic number: a survey , 2001, Discret. Math..

[8]  Xuding Zhu CIRCULAR CHROMATIC NUMBER AND GRAPH MINORS , 2000 .

[9]  Xuding Zhu,et al.  The circular chromatic number of series-parallel graphs with large girth , 2000 .

[10]  XUDING ZHU,et al.  Star chromatic numbers of graphs , 1996, Comb..

[11]  David R. Guichard,et al.  Acyclic graph coloring and the complexity of the star chromatic number , 1993, J. Graph Theory.

[12]  Bing Zhou,et al.  The star chromatic number of a graph , 1993, J. Graph Theory.

[13]  Xuding Zhu,et al.  Tight relation between the circular chromatic number and the girth of series-parallel graphs , 2002, Discret. Math..

[14]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[15]  Pavol Hell,et al.  High-Girth Graphs Avoiding a Minor are Nearly Bipartite , 2001, J. Comb. Theory, Ser. B.

[16]  Xuding Zhu,et al.  Uniquely H -colorable graphs with large girth , 1996 .

[17]  David Moser,et al.  The star-chromatic number of planar graphs , 1997, J. Graph Theory.

[18]  William F. Klostermeyer,et al.  (2 + ε)-Coloring of planar graphs with large odd-girth , 2000 .

[19]  Michael Tarsi,et al.  On (k, d)-colorings and fractional nowhere-zero flows , 1998 .

[20]  Xuding Zhu Circular Chromatic Number of Planar Graphs of Large Odd Girth , 2001, Electron. J. Comb..

[21]  Xuding Zhu Graphs Whose Circular Chromatic Number Equals the Chromatic Number , 1999, Comb..