Handbook of Micromechanics and Nanomechanics

Preface S. Li and X.-L. Gao Microdynamics of Phononic Materials M. I. Hussein, M. J. Frazier, and M. H. Abedinnasab Micromechanics of Elastic Metamaterials X. Zhou, X. Liu, and G. Hu Phase Field Approach Micromechanics in Ferroelectric Crystals Y. Su and G. J. Weng Atomic Structure of 180 Ferroelectric Domain Walls in PbTiO3 A. Yavari and A. Angoshtari Micromechanics-based Constitutive Modeling of Chain-Structured Ferromagnetic Particulate Composites H. Yin, L. Z. Sun, and H. Zhang Nonlinear Dynamic Electromechanics in Functionally Graded Piezoelectric Materials Y. Shindo and F. Narita Mechano-electrochemical Mixture Theories for the Multiphase Fluid-Infiltrated Poroelastic Media H. Hatami-Marbini Micromechanics of Nanocomposites with Interface Energy Effects Z. Huang and J. Wang A Surface/Interface Micro-elasticity Formulation Based on Finite-Size Representative Volume Element P.-A. Itty, V. L. Corvec, and S. Li Continuum-Based Modeling of Size Effects in Micro- and Nanostructured Materials R. K. Abu Al-Rub Strain Gradient Solutions of Eshelby-Type Inclusion Problems X.-L. Gao Problems in the Theories of Couple-Stress Elasticity and Dipolar Gradient Elasticity: A Comparison P. A. Gourgiotis and H. G. Georgiadis Solutions to the Periodic Eshelby Inclusion Problem L. Liu Variational Principles, Bounds, and Percolation Thresholds of Composites X. F. Xu Inclusion Clusters in the Archetype-Blending Continuum Theory K. I. Elkhodary, S. Tang, and W. K. Liu Microstructural Characterization of Metals Using Nanoindentation G. Z. Voyiadjis and D. Faghihi A Multiscale Modeling of Multiple Physics X. Wang, J. Li, J. D. Lee, and A. Eskandarian Coarse-Grained Atomistic Simulations of Dislocation and Fracture in Metallic Materials L. Xiong., Q. Deng, and Y. Chen Timescaling in Multiscale Mechanics of Nanowires and Nanocrystalline Materials V. Tomar Modeling and Simulation of Carbon Nanotube-Based Composites and Devices S. Xiao, J. Ni, W. Yang, and C. Nelsen Concurrent Approach to Lattice Dynamics Based on Extended Space-Time Finite Element Method D. Qian and S. Chirputkar Mechanics of Nanoporous Metals A. Giri, J. Tao, M. Kirca, and A. C. To Numerical Characterization of Nanowires Y. T. Gu and H. F. Zhan Molecular Modeling of the Microstructure of Soft Materials: Healing, Memory, and Toughness Mechanisms S. Keten, S. Mishra, and L. Ruiz Intricate Multiscale Mechanical Behavior of Natural Fish-Scale Composites D. Zhu, F. Barthelat, and F. Vernerey Mechanics of Random Fiber Networks R. C. Picu Size-Dependent Probabilistic Damage Micromechanics and Toughening Behavior of Particle-/Fiber-Reinforced Composites J. Woody and K. Yanase Multiscale Asymptotic Expansion Formulations for Heterogeneous Slab and Column Structures with Three-Dimensional Microstructures D. Wang, L. Fang, and P. Xie Computational Overlap Coupling Between Micropolar Elastic Continuum Finite Elements and Elastic Spherical Discrete Elements in One Dimension R. A. Regueiro and B. Yan Nonconcurrent Computational Homogenization of Nonlinear, Stochastic, and Viscoelastic Materials J. Yvonnet, Q.-C. He, E. Monteiro, A. B. Tran, C. Toulemonde, J. Sanahuja, A. Clement, and C. Soize

[1]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[2]  Youping Chen Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.

[3]  H. J. Woods,et al.  X-Ray Studies of the Structure of Hair, Wool, and Related Fibres. II. The Molecular Structure and Elastic Properties of Hair Keratin , 1934 .

[4]  Xianqiao Wang,et al.  Multiscale Computation for Nano/Micromaterials , 2009 .

[5]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[6]  Youping Chen,et al.  Multiscale material modeling and its application to a dynamic crack propagation problem , 2009 .

[7]  Youping Chen,et al.  A continuum theory for modeling the dynamics of crystalline materials. , 2009, Journal of nanoscience and nanotechnology.

[8]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[9]  F. Abraham,et al.  Large-scale simulations of brittle and ductile failure in fcc crystals , 1998 .

[10]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[11]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[12]  Alexander Stukowski,et al.  A variational formulation of the quasicontinuum method based on energy sampling in clusters , 2009 .

[13]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[14]  William G. Hoover,et al.  Nonequilibrium Molecular Dynamics , 1983 .

[15]  Paul Steinmann,et al.  Studies of validity of the Cauchy–Born rule by direct comparison of continuum and atomistic modelling , 2006 .

[16]  Youping Chen,et al.  Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory , 2009 .

[17]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[18]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[19]  K. Kamijo,et al.  Molecular dynamics study for the thermal conductivity of diatomic liquid , 2004 .

[20]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[21]  Richard D. Hornung,et al.  Multiscale simulation using Generalized Interpolation Material Point (GIMP) method and Molecular Dynamics (MD) , 2006 .

[22]  Franz-Josef Ulm,et al.  Nanogranular origins of the strength of bone. , 2006, Nano letters.

[23]  Youping Chen,et al.  Atomistic simulation of mechanical properties of diamond and silicon carbide by a field theory , 2007 .

[24]  Modeling and Simulation of Wave Propagation Based on Atomistic Field Theory , 2011 .

[25]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[26]  Henry J. Castejon,et al.  Nonequilibrium Molecular Dynamics Calculation of the Thermal Conductivity of Solid Materials , 2003 .

[27]  H. Espinosa,et al.  Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization , 2007, Journal of Microelectromechanical Systems.

[28]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[29]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[30]  Satya N. Atluri,et al.  Multiscale Simulation Based on The Meshless Local Petrov-Galerkin (MLPG) Method , 2004 .

[31]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[32]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[33]  D. Poulikakos,et al.  Molecular dynamics simulation in nanoscale heat transfer: A review , 2003 .

[34]  Youping Chen,et al.  Reformulation of microscopic balance equations for multiscale materials modeling. , 2009, The Journal of chemical physics.

[35]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[36]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[37]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[38]  Michael Ortiz,et al.  A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature , 2007 .