Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach

This paper introduces a new long memory volatility process, denoted by adaptive FIGARCH, or A-FIGARCH , which is designed to account for both long memory and structural change in the conditional variance process. Structural change is modeled by allowing the intercept to follow the smooth flexible functional form due to Gallant (1984. The Fourier flexible form. American Journal of Agricultural Economics 66, 204-208). A Monte Carlo study finds that the A-FIGARCH model outperforms the standard FIGARCH model when structural change is present, and performs at least as well in the absence of structural instability. An empirical application to stock market volatility is also included to illustrate the usefulness of the technique.

[1]  M. Dacorogna,et al.  A geographical model for the daily and weekly seasonal volatility in the foreign exchange market , 1993 .

[2]  R. Lumsdaine,et al.  Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models , 1996 .

[3]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[4]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[5]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[6]  Timo Teräsvirta,et al.  A simple nonlinear time series model with misleading linear properties , 1999 .

[7]  R. Dahlhaus,et al.  Statistical inference for time-varying ARCH processes , 2006, math/0607799.

[8]  C. Granger,et al.  Modeling volatility persistence of speculative returns: A new approach , 1996 .

[9]  Christian Conrad,et al.  Inequality Constraints in the Fractionally Integrated GARCH Model , 2006 .

[10]  Francis X. Dieobold Modeling The persistence Of Conditional Variances: A Comment , 1986 .

[11]  Zacharias Psaradakis,et al.  On the Autocorrelation Properties of Long‐Memory GARCH Processes , 2002 .

[12]  W. Enders,et al.  Testing for a unit-root with a nonlinear Fourier function , 2004 .

[13]  R. Engle,et al.  The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes , 2005 .

[14]  Bruce E. Hansen,et al.  Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator , 1994, Econometric Theory.

[15]  Ignacio N. Lobato,et al.  Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .

[16]  Thomas Mikosch,et al.  Change of structure in financial time series, long range dependence and the GARCH model , 1998 .

[17]  Paolo Zaffaroni,et al.  Pseudo-maximum likelihood estimation of ARCH(∞) models , 2005, math/0607798.

[18]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[19]  J. Stiglitz,et al.  Economic Forecasts and Expectations. , 1971 .

[20]  James Davidson,et al.  Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model , 2004 .

[21]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[22]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[23]  Clive W. J. Granger,et al.  Non-stationarities in stock returns , 2004 .

[24]  Marcelo C. Medeiros,et al.  MODELING MULTIPLE REGIMES IN FINANCIAL VOLATILITY WITH A FLEXIBLE COEFFICIENT GARCH(1,1) MODEL , 2009, Econometric Theory.

[25]  V. Kazakevičius,et al.  ON STATIONARITY IN THE ARCH([infty infinity]) MODEL , 2002 .

[26]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[27]  David I. Harvey The evaluation of economic forecasts , 1997 .

[28]  C. Granger,et al.  Nonstationarities in Stock Returns , 2005, Review of Economics and Statistics.

[29]  P. Zaffaroni Contemporaneous aggregation of GARCH processes , 2007 .

[30]  J. Nyblom Testing for the Constancy of Parameters over Time , 1989 .

[31]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[32]  Michel Beine,et al.  Structural change and long memory in volatility: new evidence from daily exchange rates , 2000 .

[33]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[34]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[35]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[36]  Michael P. Clements,et al.  On the limitations of comparing mean square forecast errors , 1993 .

[37]  Professors Engle,et al.  MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT , 1986 .

[38]  Andrea Beltratti,et al.  Breaks and persistency: macroeconomic causes of stock market volatility , 2006 .

[39]  G. Schwert Business Cycles, Financial Crises, and Stock Volatility , 1989 .

[40]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[41]  Timo Teräsvirta,et al.  Modelling Autoregressive Processes with a Shifting Mean , 2006 .

[42]  A. Ronald Gallant,et al.  The Fourier Flexible Form , 1984 .

[43]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[44]  Andrea Beltratti,et al.  Structural Change and Long Range Dependence in Volatility of Exchange Rates: Either, Neither or Both? , 2004 .

[45]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[46]  Anders Rahbek,et al.  ASYMPTOTIC INFERENCE FOR NONSTATIONARY GARCH , 2004, Econometric Theory.

[47]  J. Beran,et al.  Volatility of Stock-Market Indexes—An Analysis Based on SEMIFAR Models , 2001 .

[48]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[49]  Eric Hillebrand Neglecting parameter changes in GARCH models , 2005 .

[50]  David E. Rapach,et al.  Structural breaks and GARCH models of exchange rate volatility , 2008 .

[51]  A. Harvey Long memory in stochastic volatility , 2007 .

[52]  Dick J. C. van Dijk,et al.  Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity , 2004 .

[53]  K. West,et al.  The Predictive Ability of Several Models of Exchange Rate Volatility , 1994 .

[54]  C. Morana IGARCH effects: an interpretation , 2002 .

[55]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[56]  J. Beran,et al.  SEMIFAR Models with Applications to Commodities, Exchange Rates and the Volatility of Stock Market Indices , 1999 .