Equilibriums of extremely magnetized compact stars with force-free magnetotunnels

We present numerical solutions for stationary and axisymmetric equilibriums of compact stars associated with extremely strong magnetic fields. The interior of the compact stars is assumed to satisfy ideal magnetohydrodynamic (MHD) conditions, while in the region of negligible mass density the force-free conditions or electromagnetic vacuum are assumed. Solving all components of Einstein's equations, Maxwell's equations, ideal MHD equations, and force-free conditions, equilibriums of rotating compact stars associated with mixed poloidal and toroidal magnetic fields are obtained. It is found that in the extreme cases the strong mixed magnetic fields concentrating in a toroidal region near the equatorial surface expel the matter and form a force-free toroidal magnetotunnel. We also introduce a new differential rotation law for computing solutions associated with force-free magnetosphere, and present other extreme models without the magnetotunnel.

[1]  N. Bucciantini,et al.  Numerical Equilibrium Configurations and Quadrupole Moments of Post-Merger Differentially Rotating Relativistic Stars , 2022, Universe.

[2]  N. Stergioulas,et al.  Models of binary neutron star remnants with tabulated equations of state , 2021, Monthly notices of the Royal Astronomical Society.

[3]  N. Stergioulas,et al.  Equilibrium sequences of differentially rotating stars with post-merger-like rotational profiles , 2020, 2011.10612.

[4]  N. Andersson,et al.  Merger-inspired rotation laws and the low-T/W instability in neutron stars , 2020, 2003.10198.

[5]  M. Ansorg,et al.  Maximum Mass of Differentially Rotating Strange Quark Stars , 2019, The Astrophysical Journal.

[6]  N. Stergioulas,et al.  Universal relations for differentially rotating relativistic stars at the threshold to collapse , 2017, 1709.02787.

[7]  N. Bucciantini,et al.  General relativistic models for rotating magnetized neutron stars in conformally flat space–time , 2017, 1705.03795.

[8]  N. Stergioulas,et al.  Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers , 2017, 1702.02567.

[9]  M. Ansorg,et al.  Effect of the equation of state on the maximum mass of differentially rotating neutron stars , 2016 .

[10]  I. Kowalska,et al.  A New View on the Maximum Mass of Differentially Rotating Neutron Stars , 2016, 1609.02336.

[11]  Erik Schnetter,et al.  A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.

[12]  A. Watts,et al.  Magnetars: the physics behind observations. A review , 2015, Reports on progress in physics. Physical Society.

[13]  N. Bucciantini,et al.  General relativistic neutron stars with twisted magnetosphere , 2014, 1412.4036.

[14]  N. Bucciantini,et al.  Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition , 2014, 1401.4308.

[15]  K. Glampedakis,et al.  The inside-out view on neutron-star magnetospheres , 2013, 1306.6881.

[16]  L. Rezzolla,et al.  Equilibrium models of relativistic stars with a toroidal magnetic field , 2012, 1207.4035.

[17]  S. Yoshida,et al.  Differentially-rotating neutron star models with a parametrized rotation profile , 2011, 1101.2664.

[18]  R. Ciolfi,et al.  Structure and deformations of strongly magnetized neutron stars with twisted torus configurations , 2010, 1003.2148.

[19]  R. Ciolfi,et al.  Relativistic models of magnetars: the twisted torus magnetic field configuration , 2009, 0903.0556.

[20]  J. Braithwaite Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components , 2008, 0810.1049.

[21]  J. Braithwaite,et al.  Stable magnetic fields in stellar interiors , 2005, astro-ph/0510316.

[22]  H. Spruit,et al.  Evolution of the magnetic field in magnetars , 2005, astro-ph/0510287.

[23]  H. Spruit,et al.  A fossil origin for the magnetic field in A stars and white dwarfs , 2004, Nature.

[24]  S. Shapiro,et al.  Effect of Differential Rotation on the Maximum Mass of Neutron Stars: Realistic Nuclear Equations of State , 2004, astro-ph/0401581.

[25]  K. Ioka,et al.  Relativistic Stars with Poloidal and Toroidal Magnetic Fields and Meridional Flow , 2003, astro-ph/0305352.

[26]  S. Shapiro Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping , 2000, astro-ph/0010493.

[27]  S. Shapiro,et al.  On the Maximum Mass of Differentially Rotating Neutron Stars , 1999, The Astrophysical journal.

[28]  S. Bonazzola,et al.  A formulation of the virial theorem in general relativity , 1994 .

[29]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[30]  I. Hachisu,et al.  Rapidly rotating general relativistic stars – II. Differentially rotating polytropes , 1989 .

[31]  R. Beig Arnowitt-Deser-Misner energy and g00 , 1978 .

[32]  Parampreet Singh,et al.  Subtraction of correlated noise in global networks of gravitational-wave interferometers , 2016 .

[33]  M. Bejger,et al.  The maximum mass of differentially rotating neutron stars , 2008 .