Combinatorial Geometry and Coding Theory

In this paper, we overview three closely related problems: Nelson-Hadwiger problem on coloring spaces with forbidden monochromatics distances; Borsuk's problem on partitioning sets in spaces into parts of smaller diameter; problem of finding codes with forbidden Hamming distances.

[1]  J. Bourgain,et al.  On convering a set in R N by balls of the same diameter , 1991 .

[2]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[3]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[4]  Rudolf Ahlswede,et al.  Lectures on advances in combinatorics , 2008, Universitext.

[5]  Robert Knast An approximate theorem for Borsuk's conjecture , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  A. V. Bobu,et al.  Independence numbers and chromatic numbers of some distance graphs , 2015, Probl. Inf. Transm..

[7]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[8]  A. Raigorodskii Coloring Distance Graphs and Graphs of Diameters , 2013 .

[9]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[10]  A. S. Gusev New upper bound for the chromatic number of a random subgraph of a distance graph , 2015 .

[11]  A. Raigorodskii,et al.  The Borsuk Partition Problem: The Seventieth Anniversary , 2004 .

[12]  Andries E. Brouwer,et al.  A 64-Dimensional Counterexample to Borsuk's Conjecture , 2014, Electron. J. Comb..

[13]  Kent Cantwell,et al.  Finite Euclidean Ramsey Theory , 1996, J. Comb. Theory A.

[14]  H. Eggleston Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .

[15]  H. Hadwiger,et al.  Ein ?berdeckungssätze für den Euklidischen Raum , 1944 .

[16]  Andrey B. Kupavskii On random subgraphs of Kneser and Schrijver graphs , 2016, J. Comb. Theory, Ser. A.

[17]  C. Rogers,et al.  The realization of distances within sets in Euclidean space , 1972 .

[18]  L. Bogolubsky,et al.  Independence numbers and chromatic numbers of the random subgraphs of some distance graphs , 2015 .

[19]  A. Raigorodskii,et al.  On the maximal number of edges in a uniform hypergraph with one forbidden intersection , 2015 .

[20]  Rudolf Ahlswede,et al.  The Complete Intersection Theorem for Systems of Finite Sets , 1997, Eur. J. Comb..

[21]  Paul Erdös,et al.  On random graphs, I , 1959 .

[22]  C. A. Rogers Symmetrical sets of constant width and their partitions , 1971 .

[23]  H. Hadwiger Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1946 .

[24]  Gérard D. Cohen,et al.  Codes with forbidden distances , 2000, Discret. Math..

[25]  Borsuk's problem , 1977 .

[26]  A. Raigorodskii,et al.  Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection , 2016 .

[27]  Andrei M. Raigorodskii Cliques and cycles in distance graphs and graphs of diameters , 2013, Discrete Geometry and Algebraic Combinatorics.

[28]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[29]  Svante Janson,et al.  The Chromatic Number , 2011 .

[30]  B. Bollobás The evolution of random graphs , 1984 .

[31]  Andrei M. Raigorodskii Borsuk's problem and the chromatic numbers of metric spaces , 2007, Electron. Notes Discret. Math..

[32]  A. Raigorodskii The problems of Borsuk and Grunbaum on lattice polytopes , 2005 .

[33]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[34]  David Coulson A 15-colouring of 3-space omitting distance one , 2002, Discret. Math..

[35]  A. Raigorodskii Borsuk's problem for (0, 1)-polytopes and cross-polytopes , 2002 .

[36]  О хроматическом числе пространства@@@On the chromatic number of a space , 2000 .

[37]  Günter M. Ziegler Coloring Hamming Graphs, Optimal Binary Codes, and the 0/1-Borsuk Problem in Low Dimensions , 2001, Computational Discrete Mathematics.

[38]  G. Exoo,et al.  On the Chromatic Number of $$\mathbb {R}^4$$R4 , 2014 .

[39]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[40]  Rudolf Ahlswede,et al.  The Complete Nontrivial-Intersection Theorem for Systems of Finite Sets , 1996, J. Comb. Theory, Ser. A.

[41]  An improvement of the Frankl-Wilson theorem on the number of edges in a hypergraph with forbidden intersections of edges , 2014 .

[42]  Thomas Jenrich A 64-dimensional two-distance counterexample to Borsuk's conjecture , 2013 .

[43]  Zoltán Füredi,et al.  Forbidding Just One Intersection , 1985, J. Comb. Theory, Ser. A.

[44]  A. Raigorodskii The Borsuk problem for integral polytopes , 2002 .

[45]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[46]  M. Pyaderkin Independence numbers of random subgraphs of distance graphs , 2016 .

[47]  A. Raigorodskii Surveys in Contemporary Mathematics: Three lectures on the Borsuk partition problem , 2007 .

[48]  G. Tóth,et al.  Note on the Chromatic Number of the Space , 2003 .

[49]  Об одной оценке в проблеме Борсука@@@On a bound in Borsuk's problem , 1999 .

[50]  Andrei M. Raigorodskii,et al.  New estimates in the problem of the number of edges in a hypergraph with forbidden intersections , 2013, Probl. Inf. Transm..

[51]  Oren Nechushtan,et al.  On the space chromatic number , 2002, Discret. Math..

[52]  О хроматическом числе пространства с запрещенным равносторонним треугольником@@@On the chromatic number of a space with forbidden equilateral triangle , 2014 .

[53]  A. Raigorodskii,et al.  Improvements of the Frankl-Rödl theorem on the number of edges of a hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a space with forbidden equilateral triangle , 2015 .

[54]  Andriy Bondarenko On Borsuk’s Conjecture for Two-Distance Sets , 2014, Discret. Comput. Geom..

[55]  JÓZSEF BALOGH,et al.  Coloring Some Finite Sets in ℝn , 2013, Discuss. Math. Graph Theory.

[56]  H. Hadwiger Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1945 .

[57]  G. Exoo,et al.  On the Chromatic Number of $\mathbb{R}^n$ for Small Values of $n$ , 2014, 1408.2002.

[58]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[59]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[60]  O. Schramm Illuminating Sets of Constant Width , 1988 .

[61]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[62]  A. Raigorodskii,et al.  Borsuk's problem and the chromatic numbers of some metric spaces , 2001 .

[63]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[64]  János Pach,et al.  Combinatorial Geometry , 2012 .

[65]  Béla Bollobás,et al.  On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.

[66]  Victor Klee,et al.  Old And New Unsolved Problems In Plane Geometry And Number Theory , 1991 .

[67]  A. Soifer The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .