Combinatorial Geometry and Coding Theory
暂无分享,去创建一个
[1] J. Bourgain,et al. On convering a set in R N by balls of the same diameter , 1991 .
[2] Peter Frankl,et al. Intersection theorems with geometric consequences , 1981, Comb..
[3] Jeong Hyun Kang,et al. Combinatorial Geometry , 2006 .
[4] Rudolf Ahlswede,et al. Lectures on advances in combinatorics , 2008, Universitext.
[5] Robert Knast. An approximate theorem for Borsuk's conjecture , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] A. V. Bobu,et al. Independence numbers and chromatic numbers of some distance graphs , 2015, Probl. Inf. Transm..
[7] V. Boltyanski,et al. Excursions into Combinatorial Geometry , 1996 .
[8] A. Raigorodskii. Coloring Distance Graphs and Graphs of Diameters , 2013 .
[9] Béla Bollobás,et al. Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.
[10] A. S. Gusev. New upper bound for the chromatic number of a random subgraph of a distance graph , 2015 .
[11] A. Raigorodskii,et al. The Borsuk Partition Problem: The Seventieth Anniversary , 2004 .
[12] Andries E. Brouwer,et al. A 64-Dimensional Counterexample to Borsuk's Conjecture , 2014, Electron. J. Comb..
[13] Kent Cantwell,et al. Finite Euclidean Ramsey Theory , 1996, J. Comb. Theory A.
[14] H. Eggleston. Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .
[15] H. Hadwiger,et al. Ein ?berdeckungssätze für den Euklidischen Raum , 1944 .
[16] Andrey B. Kupavskii. On random subgraphs of Kneser and Schrijver graphs , 2016, J. Comb. Theory, Ser. A.
[17] C. Rogers,et al. The realization of distances within sets in Euclidean space , 1972 .
[18] L. Bogolubsky,et al. Independence numbers and chromatic numbers of the random subgraphs of some distance graphs , 2015 .
[19] A. Raigorodskii,et al. On the maximal number of edges in a uniform hypergraph with one forbidden intersection , 2015 .
[20] Rudolf Ahlswede,et al. The Complete Intersection Theorem for Systems of Finite Sets , 1997, Eur. J. Comb..
[21] Paul Erdös,et al. On random graphs, I , 1959 .
[22] C. A. Rogers. Symmetrical sets of constant width and their partitions , 1971 .
[23] H. Hadwiger. Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1946 .
[24] Gérard D. Cohen,et al. Codes with forbidden distances , 2000, Discret. Math..
[25] Borsuk's problem , 1977 .
[26] A. Raigorodskii,et al. Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection , 2016 .
[27] Andrei M. Raigorodskii. Cliques and cycles in distance graphs and graphs of diameters , 2013, Discrete Geometry and Algebraic Combinatorics.
[28] János Pach,et al. Research problems in discrete geometry , 2005 .
[29] Svante Janson,et al. The Chromatic Number , 2011 .
[30] B. Bollobás. The evolution of random graphs , 1984 .
[31] Andrei M. Raigorodskii. Borsuk's problem and the chromatic numbers of metric spaces , 2007, Electron. Notes Discret. Math..
[32] A. Raigorodskii. The problems of Borsuk and Grunbaum on lattice polytopes , 2005 .
[33] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[34] David Coulson. A 15-colouring of 3-space omitting distance one , 2002, Discret. Math..
[35] A. Raigorodskii. Borsuk's problem for (0, 1)-polytopes and cross-polytopes , 2002 .
[36] О хроматическом числе пространства@@@On the chromatic number of a space , 2000 .
[37] Günter M. Ziegler. Coloring Hamming Graphs, Optimal Binary Codes, and the 0/1-Borsuk Problem in Low Dimensions , 2001, Computational Discrete Mathematics.
[38] G. Exoo,et al. On the Chromatic Number of $$\mathbb {R}^4$$R4 , 2014 .
[39] Alexander Sidorenko,et al. What we know and what we do not know about Turán numbers , 1995, Graphs Comb..
[40] Rudolf Ahlswede,et al. The Complete Nontrivial-Intersection Theorem for Systems of Finite Sets , 1996, J. Comb. Theory, Ser. A.
[41] An improvement of the Frankl-Wilson theorem on the number of edges in a hypergraph with forbidden intersections of edges , 2014 .
[42] Thomas Jenrich. A 64-dimensional two-distance counterexample to Borsuk's conjecture , 2013 .
[43] Zoltán Füredi,et al. Forbidding Just One Intersection , 1985, J. Comb. Theory, Ser. A.
[44] A. Raigorodskii. The Borsuk problem for integral polytopes , 2002 .
[45] P. Erdos,et al. On the evolution of random graphs , 1984 .
[46] M. Pyaderkin. Independence numbers of random subgraphs of distance graphs , 2016 .
[47] A. Raigorodskii. Surveys in Contemporary Mathematics: Three lectures on the Borsuk partition problem , 2007 .
[48] G. Tóth,et al. Note on the Chromatic Number of the Space , 2003 .
[49] Об одной оценке в проблеме Борсука@@@On a bound in Borsuk's problem , 1999 .
[50] Andrei M. Raigorodskii,et al. New estimates in the problem of the number of edges in a hypergraph with forbidden intersections , 2013, Probl. Inf. Transm..
[51] Oren Nechushtan,et al. On the space chromatic number , 2002, Discret. Math..
[53] A. Raigorodskii,et al. Improvements of the Frankl-Rödl theorem on the number of edges of a hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a space with forbidden equilateral triangle , 2015 .
[54] Andriy Bondarenko. On Borsuk’s Conjecture for Two-Distance Sets , 2014, Discret. Comput. Geom..
[55] JÓZSEF BALOGH,et al. Coloring Some Finite Sets in ℝn , 2013, Discuss. Math. Graph Theory.
[56] H. Hadwiger. Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1945 .
[57] G. Exoo,et al. On the Chromatic Number of $\mathbb{R}^n$ for Small Values of $n$ , 2014, 1408.2002.
[58] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .
[59] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[60] O. Schramm. Illuminating Sets of Constant Width , 1988 .
[61] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[62] A. Raigorodskii,et al. Borsuk's problem and the chromatic numbers of some metric spaces , 2001 .
[63] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[64] János Pach,et al. Combinatorial Geometry , 2012 .
[65] Béla Bollobás,et al. On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.
[66] Victor Klee,et al. Old And New Unsolved Problems In Plane Geometry And Number Theory , 1991 .
[67] A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .