Relative entropy at the channel output of a capacity-achieving code

In this paper we establish a new inequality tying together the coding rate, the probability of error and the relative entropy between the channel and the auxiliary output distribution. This inequality is then used to show the strong converse, and to prove that the output distribution of a code must be close, in relative entropy, to the capacity achieving output distribution (for DMC and AWGN). One of the key tools in our analysis is the concentration of measure (isoperimetry).

[1]  Shlomo Shamai,et al.  The empirical distribution of good codes , 1997, IEEE Trans. Inf. Theory.

[2]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[3]  Sergio Verdú,et al.  Scalar coherent fading channel: Dispersion analysis , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[4]  S. Bobkov,et al.  Concentration of the information in data with log-concave distributions , 2010, 1012.5457.

[5]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[6]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[7]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[8]  Sirin Nitinawarat,et al.  On maximal error capacity regions of Symmetric Gaussian Multiple-Access Channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[9]  S. Bobkov,et al.  Discrete isoperimetric and Poincaré-type inequalities , 1999 .

[10]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[11]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[12]  H. Vincent Poor,et al.  Channel coding: non-asymptotic fundamental limits , 2010 .

[13]  Gregory W. Wornell,et al.  Communication Under Strong Asynchronism , 2007, IEEE Transactions on Information Theory.

[14]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .