A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

[1]  Hong-Zhong Huang,et al.  A unified criterion for fatigue–creep life prediction of high temperature components , 2017 .

[2]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[3]  Jing Li,et al.  Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach , 2011 .

[4]  Kc Liu,et al.  A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction , 1993 .

[5]  Patrick J. Golden,et al.  A fracture mechanics life prediction methodology applied to dovetail fretting , 2006 .

[6]  K. Miller,et al.  Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures , 1982 .

[7]  Tianwen Zhao,et al.  Fatigue of 7075-T651 aluminum alloy , 2008 .

[8]  Jean-Louis Chaboche,et al.  Investigation of multiaxial fatigue in the prospect of turbine disc applications: Part II – Fatigue criteria analysis and formulation of a new combined one , 2013 .

[9]  Ayhan Ince,et al.  A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings , 2014 .

[10]  Hamid Jahed,et al.  Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion , 2014 .

[11]  Ali Fatemi,et al.  Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels , 2009 .

[12]  Jianfu Hou,et al.  An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis , 2002 .

[13]  Takashi Ogata,et al.  FRACTURE MECHANISMS AND LIFE ASSESSMENT UNDER HIGH‐STRAIN BIAXIAL CYCLIC LOADING OF TYPE 304 STAINLESS STEEL , 1989 .

[14]  Xian‐Cheng Zhang,et al.  The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy , 2017 .

[15]  Dianyin Hu,et al.  Combined fatigue experiments on full scale turbine components , 2013 .

[16]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[17]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[18]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[19]  Franck Morel,et al.  A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads , 2013 .

[20]  Haoyang Wei,et al.  A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials , 2017 .

[21]  Ahmad Ghasemi-Ghalebahman,et al.  A fatigue model for sensitive materials to non-proportional loadings , 2015 .

[22]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[23]  Hong-Zhong Huang,et al.  Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals , 2016 .

[24]  Saeed Ziaei-Rad,et al.  Failure analysis of Ti6Al4V gas turbine compressor blades , 2008 .

[25]  Li Jie Chen,et al.  Power-exponent function model for low-cycle fatigue life prediction and its applications – Part II: Life prediction of turbine blades under creep–fatigue interaction , 2007 .

[26]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[27]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[28]  Luca Susmel,et al.  The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading , 2016 .

[29]  A. Fernández‐Canteli,et al.  A Unified Statistical Methodology for Modeling Fatigue Damage , 2010 .

[30]  Lei Wang,et al.  Evaluation of multiaxial fatigue life prediction criteria for PEEK , 2014 .

[31]  J. R. Valdés,et al.  Probabilistic formulation of the multiaxial fatigue damage of Liu , 2011 .

[32]  De-Guang Shang,et al.  Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials , 2010 .

[33]  G. Meda,et al.  Contact Stresses in Dovetail Attachments: Finite Element Modeling , 1999 .

[34]  Yanyao Jiang,et al.  Fatigue of extruded AZ31B magnesium alloy under stress- and strain-controlled conditions including step loading , 2017 .

[35]  J. A. Bannantine,et al.  A Variable Amplitude Multiaxial Fatigue Life Prediction Methods , 1989 .

[36]  Weiwen Peng,et al.  Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty , 2016, Reliab. Eng. Syst. Saf..

[37]  Zhiyong Wu,et al.  Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading , 2014 .

[38]  Kais Ammar,et al.  Multiaxial high-cycle fatigue criteria and life prediction : Application to gas turbine blade , 2016 .

[39]  G. Atxaga,et al.  Failure Analysis of Two Sets of Aircraft Blades , 2010 .

[40]  Nicole Apetre,et al.  Generalized probabilistic model allowing for various fatigue damage variables , 2017 .

[41]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[42]  C. H. Wang,et al.  Multiaxial random load fatigue: life prediction techniques and experiments , 2013 .

[43]  Ayhan Ince,et al.  A mean stress correction model for tensile and compressive mean stress fatigue loadings , 2017 .

[44]  Dianyin Hu,et al.  Experimental Investigation of Fatigue Crack Growth Behavior of GH2036 Under Combined High and Low Cycle Fatigue , 2016 .

[45]  José A.F.O. Correia,et al.  A probabilistic analysis of Miner's law for different loading conditions , 2016 .

[46]  F. A. Conle,et al.  Multiaxial Stress-Strain Modeling and Fatigue Life Prediction of SAE Axle Shafts , 1993 .

[47]  Adam Niesłony,et al.  Fatigue life under non-Gaussian random loading from various models , 2004 .

[48]  Grzegorz Glinka,et al.  MEAN STRESS EFFECTS IN MULTIAXIAL FATIGUE , 2007 .

[49]  Shan-Tung Tu,et al.  Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 °C based on cycle-by-cycle concept , 2017 .

[50]  Hong-Zhong Huang,et al.  Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels , 2015 .