Colouring Generalized Claw-Free Graphs and Graphs of Large Girth: Bounding the Diameter

For a fixed integer, the k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free if G does not contain H as an induced subgraph. It is known that for all k ≥ 3, the k-Colouring problem is NP-complete for H-free graphs if H contains an induced claw or cycle. The case where H contains a cycle follows from the known result that the problem is NP-complete even for graphs of arbitrarily large fixed girth. We examine to what extent the situation may change if in addition the input graph has bounded diameter. 2012 ACM Subject Classification Mathematics of computing → Graph theory

[1]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[2]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[3]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[4]  Maya Jakobine Stein,et al.  Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven Vertices , 2018, Comb..

[5]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[6]  Miroslav Chlebík,et al.  Hard coloring problems in low degree planar bipartite graphs , 2006, Discret. Appl. Math..

[7]  Asif Zaman,et al.  MOORE GRAPHS OF DIAMETER 2 AND 3 , 2010 .

[8]  Shenwei Huang,et al.  List-three-coloring graphs with no induced $P_6+rP_3$. , 2018 .

[9]  N. Alon Restricted colorings of graphs , 1993 .

[10]  Stefan Hougardy,et al.  Uniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth , 1998, Combinatorics, Probability and Computing.

[11]  Jian Song,et al.  A Survey on the Computational Complexity of Coloring Graphs with Forbidden Subgraphs , 2014, J. Graph Theory.

[12]  R. M. Damerell On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Jian Song,et al.  Coloring graphs without short cycles and long induced paths , 2011, Discret. Appl. Math..

[14]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[15]  Maya Jakobine Stein,et al.  3-Colouring Pt-free graphs without short odd cycles , 2020, ArXiv.

[16]  Daniël Paulusma,et al.  Colouring H-Free Graphs of Bounded Diameter , 2019, MFCS.

[17]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[18]  Sepehr Hajebi,et al.  Complexity dichotomy for List-5-Coloring with a forbidden induced subgraph , 2021 .

[19]  Vadim V. Lozin,et al.  Vertex coloring of graphs with few obstructions , 2017, Discret. Appl. Math..

[20]  Barnaby Martin,et al.  Colouring Graphs of Bounded Diameter in the Absence of Small Cycles , 2021, ArXiv.

[21]  Barnaby Martin,et al.  Hard Problems That Quickly Become Very Easy , 2020, Inf. Process. Lett..

[22]  R. Singleton There is No Irregular Moore Graph , 1968 .

[23]  Petr A. Golovach,et al.  Three complexity results on coloring Pk-free graphs , 2009, Eur. J. Comb..

[24]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[25]  Daniël Paulusma,et al.  Open Problems on Graph Coloring for Special Graph Classes , 2015, WG.

[26]  Barnaby Martin,et al.  The complexity of surjective homomorphism problems - a survey , 2011, Discret. Appl. Math..

[27]  Barnaby Martin,et al.  Acyclic, Star, and Injective Colouring: Bounding the Diameter , 2021, WG.

[28]  Shenwei Huang,et al.  Improved complexity results on k-coloring Pt-free graphs , 2013, Eur. J. Comb..

[29]  Alex D. Scott,et al.  H-colouring Pt-free graphs in subexponential time , 2019, Discret. Appl. Math..

[30]  Barnaby Martin,et al.  Partitioning H-Free Graphs of Bounded Diameter , 2021, ISAAC.

[31]  Zdenek Ryjácek Almost claw-free graphs , 1994, J. Graph Theory.

[32]  Michal Pilipczuk,et al.  Quasi-polynomial-time algorithm for Independent Set in Pt-free graphs via shrinking the space of induced paths , 2020, SOSA.

[33]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[34]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[35]  Maria Chudnovsky,et al.  Four-coloring P6-free graphs , 2019, SODA.

[36]  Ahmed Ainouche Quasi-claw-free graphs , 1998, Discret. Math..

[37]  Keith Edwards,et al.  The Complexity of Colouring Problems on Dense Graphs , 1986, Theor. Comput. Sci..

[38]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[39]  Konrad Dabrowski,et al.  Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs , 2015, IWOCA.

[40]  Pawel Rzazewski,et al.  Faster 3-coloring of small-diameter graphs , 2021, ESA.

[41]  M. Chudnovsky Coloring graphs with forbidden induced subgraphs , 2014 .

[42]  Paul G. Spirakis,et al.  Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs , 2012, SOFSEM.

[43]  Daniël Paulusma,et al.  Colouring (Pr + Ps)-Free Graphs , 2018, Algorithmica.

[44]  Bruce A. Reed,et al.  Colouring graphs when the number of colours is almost the maximum degree , 2014, J. Comb. Theory, Ser. B.

[45]  Zsolt Tuza,et al.  New trends in the theory of graph colorings: Choosability and list coloring , 1997, Contemporary Trends in Discrete Mathematics.