An algorithm for a generalized distance transformation based on Minkowski operations

A generalized distance transformation of binary images based on successive Minkowski operations is discussed. This distance transformation is obtained by using a two-scan algorithm. A related medial axis for image compression is defined. As an example of the transformation's application, a fast algorithm for elementary morphological operations with an arbitrary structuring element is given.<<ETX>>

[1]  Partha Pratim Das,et al.  Knight's distance in digital geometry , 1988 .

[2]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[3]  Linda G. Shapiro,et al.  Ordered structural shape matching with primitive extraction by mathematical morphology , 1987, Pattern Recognit..

[4]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[5]  Xinhua Zhuang,et al.  Morphological structuring element decomposition , 1986 .

[6]  Shigeki Yokoi,et al.  On Generalized Distance Transformation of Digitized Pictures , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[8]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[10]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.