Spirobifluorene with an asymmetric fluorenylcarbazolamine electron-donor as the hole transport material increases thermostability and efficiency of perovskite solar cells

The efficiency of perovskite solar cells utilizing spiro-OMeTAD as the hole transport material has been persistently enhanced, attaining the current 25.7%. However, these high-efficiency cells are unable to withstand the...

[1]  T. Shin,et al.  Controlled growth of perovskite layers with volatile alkylammonium chlorides , 2023, Nature.

[2]  Zhiteng Wang,et al.  Fluorine-Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. , 2022, Angewandte Chemie.

[3]  Xingwang Zhang,et al.  Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells , 2022, Science.

[4]  Bryon W. Larson,et al.  Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells , 2021, Science.

[5]  N. Koch,et al.  Doping Approaches for Organic Semiconductors. , 2021, Chemical reviews.

[6]  Peng Wang,et al.  A Perylene‐Based Conjugated Polymer Endows Perovskite Solar Cells with 85 °C Durability: The Control of Gas Permeation , 2021, Advanced Functional Materials.

[7]  Yiming Wang,et al.  A Helicene-Based Molecular Semiconductor Enables 85 °C Stable Perovskite Solar Cells , 2021 .

[8]  Peng Wang,et al.  A spiro-OMeTAD based semiconductor composite with over 100 °C glass transition temperature for durable perovskite solar cells , 2021 .

[9]  N. Park,et al.  Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells , 2021, Advanced materials.

[10]  Zhenhua Chen,et al.  Design of Low Crystallinity Spiro-Typed Hole Transporting Material for Planar Perovskite Solar Cells to Achieve 21.76% Efficiency , 2020, Chemistry of Materials.

[11]  Bumjoon J. Kim,et al.  Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells , 2020 .

[12]  Dong Suk Kim,et al.  Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss , 2020, Science.

[13]  Sean P. Dunfield,et al.  From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules , 2020, Advanced Energy Materials.

[14]  Dong Suk Kim,et al.  Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells , 2019, Joule.

[15]  Thuc‐Quyen Nguyen,et al.  Towards understanding the doping mechanism of organic semiconductors by Lewis acids , 2019, Nature Materials.

[16]  Dane W. deQuilettes,et al.  Charge-Carrier Recombination in Halide Perovskites. , 2019, Chemical reviews.

[17]  Zhenan Bao,et al.  Molecular parameters responsible for thermally activated transport in doped organic semiconductors , 2019, Nature Materials.

[18]  S. Fabiano,et al.  Double doping of conjugated polymers with monomer molecular dopants , 2019, Nature Materials.

[19]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[20]  K. Catchpole,et al.  Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability , 2018, ACS Energy Letters.

[21]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[22]  P. Zhang,et al.  Plant Sunscreen and Co(II)/(III) Porphyrins for UV‐Resistant and Thermally Stable Perovskite Solar Cells: From Natural to Artificial , 2018, Advanced materials.

[23]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[24]  N. Koch,et al.  Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. , 2016, Accounts of chemical research.

[25]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[26]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[27]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[28]  Alexander Lukyanov,et al.  Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors , 2011, Journal of chemical theory and computation.

[29]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[30]  B. Kippelen,et al.  Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60 , 2005 .

[31]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[32]  H. Wohltjen,et al.  Electrical conductivity in phthalocyanines modulated by circularly polarized light , 1983, Nature.

[33]  M. Gomberg,et al.  SPIRANS WITH FOUR AROMATIC RADICALS ON THE SPIRO CARBON ATOM1 , 1930 .

[34]  J. Nelson The physics of solar cells , 2003 .

[35]  H. Wieland,et al.  Farbige Additionsprodukte aromatischer Amine. Ein Beitrag zur Frage nach dem Mechanismus der Benzolkern-Substitution. (VII) , 1910 .