Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique

Abstract The purpose of this study is to evaluate the applicability of monthly weather forecasting information to the improvement of monthly dam inflow forecasts. The ANFIS (Adaptive Neuro-Fuzzy Inference System) is used to predict the optimal dam inflow, since it has the advantage of tuning the fuzzy inference system with a learning algorithm. A subtractive clustering algorithm is adopted to enhance the performance of the ANFIS model, which has a disadvantage in that the number of control rules increases rapidly as the number of fuzzy variables increases. To incorporate weather forecasting information into the ANFIS model, this study proposes a method for converting qualitative information into quantitative data. The ANFIS model for monthly dam inflow forecasts was tested in cases with and without weather forecasting information. It can be seen that the model performances obtained with the use of both past observed data and future weather forecasting information are much better than those using past observed data only.

[1]  Adam P. Piotrowski,et al.  Are Artificial Neural Network Techniques Relevant for the Estimation of Longitudinal Dispersion Coefficient in Rivers , 2005 .

[2]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[3]  Klaus-Peter Holz,et al.  Rainfall-runoff modelling using adaptive neuro-fuzzy systems , 2001 .

[4]  Lakhmi C. Jain,et al.  ANFISunfoldedintime for multivariate time series forecasting , 2004, Neurocomputing.

[5]  Lucien Duckstein,et al.  Fuzzy conceptual rainfall–runoff models , 2001 .

[6]  Yen-Chang Chen,et al.  A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction , 2001 .

[7]  A. Soldati,et al.  Artificial neural network approach to flood forecasting in the River Arno , 2003 .

[8]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[9]  Nestor L. Sy,et al.  Modelling the infiltration process with a multi-layer perceptron artificial neural network , 2006 .

[10]  Li-Chiu Chang,et al.  Intelligent control for modelling of real‐time reservoir operation , 2001 .

[11]  Y. Nagayama,et al.  Reservoir operation using the neural network and fuzzy systems for dam control and operation support , 2002 .

[12]  Tiesong Hu,et al.  A Modified Neural Network for Improving River Flow Prediction , 2005 .

[13]  S. Thomas Ng,et al.  A Modified Neural Network for Improving River Flow Prediction/Un Réseau de Neurones Modifié pour Améliorer la Prévision de L'Écoulement Fluvial , 2005 .

[14]  António Dourado,et al.  "Applying subtractive clustering for neuro-fuzzy modelling of a bleaching plant" , 1999 .

[15]  R. Abrahart,et al.  Detection of conceptual model rainfall—runoff processes inside an artificial neural network , 2003 .

[16]  J. Rantala,et al.  Optimised Subtractive Clustering for Neuro-Fuzzy Models , 2022 .

[17]  L. Bodri,et al.  Prediction of extreme precipitation using a neural network: application to summer flood occurence in Moravia , 2000 .

[18]  M. Erol Keskin,et al.  Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series , 2006 .

[19]  Ahmed Ouenes,et al.  Practical application of fuzzy logic and neural networks to fractured reservoir characterization , 2000 .

[20]  Jaroslaw J. Napiorkowski,et al.  Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers? / Les techniques de réseaux de neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivières? , 2005 .

[21]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  P. C. Nayak,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[23]  Orazio Giustolisi,et al.  Improving generalization of artificial neural networks in rainfall–runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluie-débit , 2005 .

[24]  Ashish Sharma,et al.  An application of artificial neural networks for rainfall forecasting , 2001 .

[25]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[26]  Li-Chiu Chang,et al.  Intelligent control for modeling of real‐time reservoir operation, part II: artificial neural network with operating rule curves , 2005 .

[27]  Orazio Giustolisi,et al.  Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions , 2006 .

[28]  Ana P. Barros,et al.  Quantitative flood forecasting using multisensor data and neural networks , 2001 .