PriorsEditor: a tool for the creation and use of positional priors in motif discovery

Summary: Computational methods designed to discover transcription factor binding sites in DNA sequences often have a tendency to make a lot of false predictions. One way to improve accuracy in motif discovery is to rely on positional priors to focus the search to parts of a sequence that are considered more likely to contain functional binding sites. We present here a program called PriorsEditor that can be used to create such positional priors tracks based on a combination of several features, including phylogenetic conservation, nucleosome occupancy, histone modifications, physical properties of the DNA helix and many more. Availability: PriorsEditor is available as a web start application and downloadable archive from http://tare.medisin.ntnu.no/priorseditor (requires Java 1.6). The web site also provides tutorials, screenshots and example protocol scripts. Contact: kjetil.klepper@ntnu.no

[1]  Alexander J. Hartemink,et al.  Informative priors based on transcription factor structural class improve de novo motif discovery , 2006, ISMB.

[2]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[3]  A. Sandelin,et al.  Applied bioinformatics for the identification of regulatory elements , 2004, Nature Reviews Genetics.

[4]  David J. Arenillas,et al.  JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles , 2009, Nucleic Acids Res..

[5]  T. Bailey,et al.  High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites , 2008, Nucleic acids research.

[6]  Jason B. Ernst,et al.  Integrating multiple evidence sources to predict transcription factor binding in the human genome. , 2010, Genome research.

[7]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[8]  Domènec Farré,et al.  Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters , 2007, BMC Genomics.

[9]  Obi L. Griffith,et al.  ORegAnno: an open-access community-driven resource for regulatory annotation , 2007, Nucleic Acids Res..

[10]  H. Lähdesmäki,et al.  Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources , 2008, PloS one.

[11]  Irene K. Moore,et al.  A genomic code for nucleosome , 2006 .

[12]  Ariel S. Schwartz,et al.  An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man , 2010, Cell.

[13]  P. Bucher,et al.  Searching for regulatory elements in human noncoding sequences. , 1997, Current opinion in structural biology.

[14]  Francesca Chiaromonte,et al.  Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. , 2004, Genome research.

[15]  G. K. Sandve,et al.  A survey of motif discovery methods in an integrated framework , 2006, Biology Direct.

[16]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[17]  Philip Machanick,et al.  The value of position-specific priors in motif discovery using MEME , 2010, BMC Bioinformatics.

[18]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[19]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.