Optimization of Subdivision Invariant Tetrahedra

While two-dimensional triangles are always subdivision invariant, the same does not always hold for their three-dimensional counterparts. We consider several interesting properties of those three-dimensional tetrahedra which are subdivision invariant and offer them a new classification. Moreover, we study the optimization of these tetrahedra, arguing that the second Sommerville tetrahedra are the closest to being regular and are optimal by many measures. Anisotropic subdivision invariant tetrahedra with high aspect ratios are characterized. Potential implications and applications of our findings are also discussed.

[1]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[2]  Sergey Korotov,et al.  Dissection of the path-simplex in R-n into n path-subsimplices , 2007 .

[3]  Allan L. Edmonds Sommerville's Missing Tetrahedra , 2007, Discret. Comput. Geom..

[4]  W. Marsden I and J , 2012 .

[5]  S Torquato,et al.  Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jonathan Richard Shewchuk,et al.  Unstructured Mesh Generation , 2011 .

[7]  V. Parthasarathy,et al.  A comparison of tetrahedron quality measures , 1994 .

[8]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[9]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[10]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[11]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[12]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[13]  Gunzburger,et al.  Advances in Studies and Applications of Centroidal Voronoi Tessellations , 2010 .

[14]  J. Lagarias,et al.  Mysteries in packing regular tetrahedra , 2012 .

[15]  Alexander Fuchs Automatic Grid Generation with Almost Regular Delaunay Tetrahedra , 1998, IMR.

[17]  Marjorie Senechal,et al.  Which Tetrahedra Fill Space , 1981 .

[18]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[19]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[20]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[21]  Alexander Fuchs Almost Regular Triangulations of Trimmend NURBS-Solids , 2001, Engineering with Computers.

[22]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[23]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[24]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[25]  Whan Ghang,et al.  Surface-area-minimizing n-hedral Tiles , 2013, 1305.1590.

[26]  Ricardo H. C. Takahashi,et al.  Algorithm 860: SimpleS—an extension of Freudenthal's simplex subdivision , 2006, TOMS.

[27]  Damrong Guoy,et al.  Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..

[28]  Rainer Mlitz Radicals and semisimple classes of Ω-groups , 1980 .

[29]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[30]  Michael Goldberg,et al.  Three Infinite Families of Tetrahedral Space-Fillers , 1974, J. Comb. Theory, Ser. A.

[31]  Jie Chen,et al.  Linear finite element superconvergence on simplicial meshes , 2014, Math. Comput..

[32]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[33]  Neil Genzlinger A. and Q , 2006 .

[34]  Todd S. Munson,et al.  A comparison of two optimization methods for mesh quality improvement , 2005, Engineering with Computers.

[35]  D. Naylor Filling space with tetrahedra , 1999 .

[36]  Herbert Edelsbrunner,et al.  Triangulations and meshes in computational geometry , 2000, Acta Numerica.

[37]  Xiang-Yang Li,et al.  Smoothing and cleaning up slivers , 2000, STOC '00.

[38]  Pierre Alliez,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..

[39]  Thomas C. Hales,et al.  Historical Overview of the Kepler Conjecture , 2006, Discret. Comput. Geom..

[40]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[41]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[42]  Herbert Edelsbrunner,et al.  Edgewise Subdivision of a Simplex , 2000, Discret. Comput. Geom..

[43]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[44]  Yunqing Huang,et al.  Convergent Adaptive Finite Element Method Based on Centroidal Voronoi Tessellations and Superconvergence , 2011 .

[45]  Timothy J. Baker,et al.  Analysis of triangle quality measures , 2003, Math. Comput..

[46]  K. Morgan,et al.  YEE'S SCHEME FOR THE INTEGRATION OF MAXWELL'S EQUATION ON UNSTRUCTURED MESHES , 2006 .

[47]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[48]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[49]  Martin Berzins,et al.  Mesh Quality: A Function of Geometry, Error Estimates or Both? , 1999, Engineering with Computers.

[50]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[51]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..

[52]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..