Geochemical modelling of fluid-rock interactions in the context of the Soultz-sous-Forêts geothermal system

The development of the Enhanced Geothermal System (EGS) at Soultz-sous-Forets (France) has given to scientists an interesting opportunity for the application of geochemical modelling of water–rock interactions, combining theoretical studies with field and experimental data. The main results of four successive and complementary studies are summarized: geochemical modelling of fluid–rock interactions with prediction of dissolution/precipitation of minerals, feed-back effects on the mineralogy and petrography of the rock (major role of silicates in the geological past and of carbonates in the near future of the exploitation), experimental control of the dynamics of silicates under thermal gradient and relation between the evolution of the petrophysics of the rocks and the heat and mass transfers. The thermal cycle of the fluid, between 200 °C and 65 °C in the geothermal loop, may be responsible for dissolution/precipitation of minerals which modify the porosity and permeability of the granite, as it happened in the geological past, in relation with hydrothermal circulations in the Rhine Graben.

[1]  J. Carrera,et al.  Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media , 1996 .

[2]  J. Drever,et al.  Mechanism of plagioclase dissolution in acid solution at 25°C , 1994 .

[3]  Gérard Touchard,et al.  Quantification of Microscopic Porous Networks By Image Analysis and Measurements of Permeability in the Soultz-Sous-Forêts Granite (Alsace, France) , 1997 .

[4]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[5]  E. W. Washburn Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Schulz,et al.  The role of disseminated calcite in the chemical weathering of granitoid rocks , 1999 .

[7]  Sebastià Olivella,et al.  Analysis of a full scale in situ test simulating repository conditions , 1998 .

[8]  R. Sibson Thickness of the Seismic Slip Zone , 2003 .

[9]  Antonio Gens,et al.  In situ behaviour of a stiff layered clay subject to thermal loading : observations and interpretation , 2007 .

[10]  Jean Vaunat,et al.  Analysis of the hydration of a bentonite seal in a deep radioactive waste repository , 2005 .

[11]  N. Michau,et al.  Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository. , 2010 .

[12]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .

[13]  Y. Géraud,et al.  Using physical properties to understand the porosity network geometry evolution in gradually altered granites in damage zones , 2007 .

[14]  N. Wardlaw,et al.  Mercury porosimetry and the interpretation of pore geometry in sedimentary rocks and artificial models , 1981 .

[15]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[16]  R. L. Gresens Composition-volume relationships of metasomatism , 1967 .

[17]  D. Rickard,et al.  Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms , 1995 .

[18]  B. Jamtveit,et al.  Fluid Flow and Transport in Rocks: Mechanisms and effects , 2011 .

[19]  Michel Rosener Etude pétrophysique et modélisation des effets des transferts thermiques entre roche et fluide dans le contexte géothermique de Soultz-sous-Forêts , 2007 .

[20]  B. Yardley,et al.  Fluid-rock interactions in the Rhine Graben: A thermodynamic model of the hydrothermal alteration observed in deep drilling , 1997 .

[21]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[22]  B. Madé Modelisation thermodynamique et cinetique des reactions geochimiques dans les interactions eau-roche , 1991 .

[23]  L. Aquilina,et al.  Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forêts geothermal site , 2004 .

[24]  J. Pinault,et al.  Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005 , 2006 .

[25]  A. Genter,et al.  Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Foreˆts, France , 1996 .

[26]  H. Pauwels,et al.  Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions , 1993 .

[27]  L. Aquilina,et al.  Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir , 1997 .

[28]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[29]  N. Wardlaw,et al.  The influence of wettability and critical pore-throat size ratio on snap—off , 1986 .

[30]  F. Gérard,et al.  Numerical validation of a Eulerian hydrochemical code using a 1D multisolute mass transport system involving heterogeneous kinetically controlled reactions , 1998 .

[31]  O. Vidal,et al.  Partitioning of La between solid and solution during the ageing of SiAlFeLaCa gels under simulated near-field conditions of nuclear waste disposal , 1995 .

[32]  B. Fritz,et al.  Étude expérimentale des transformations de phase dans un gradient thermique : application au granite de Soultz-sous-Forêts, France , 2003 .

[33]  J.-L. Potdevin,et al.  Méthodes de quantification des transferts de matiére par les fluides dans les roches métamorphiques déformées , 1987 .

[34]  Albert Genter,et al.  Fracture analysis and reservoir characterization of the granitic basement in the HRD Soultz project (France) , 1995 .

[35]  A. Baldeyrou-Bailly Etude expérimentale et modélisation de la stabilité des phyllosilicates soumis à un fort gradient thermique. Test dans le contexte du site géothermique de Soultz-sous-Forêts , 2003 .

[36]  N. Wardlaw,et al.  Mechanisms of nonwetting phase trapping during imbibition at slow rates , 1986 .

[37]  A. Genter,et al.  Petrography of the granite massif from drill cutting analysis and well log interpretation in the geothermal HDR borehole GPK1 (Soultz, Alsace, France) , 1991 .

[38]  R. Lenormand,et al.  Mechanisms of the displacement of one fluid by another in a network of capillary ducts , 1983, Journal of Fluid Mechanics.

[39]  Jacques Octave Dubois,et al.  Geometrical and fractal analysis of a three-dimensional hydrothermal vein network in a fractured granite , 1993 .

[40]  O. Vidal,et al.  Aluminium mass transfer and diffusion in water at 400–550°C, 2 kbar in the K2O–Al2O3–SiO2–H2O system driven by a thermal gradient or by a variation of temperature with time , 1999, Mineralogical Magazine.

[41]  H. Pauwels,et al.  Water-rock interactions during experiments within the geothermal Hot Dry Rock borehole GPK1, Soultz-sous-Foreˆts, Alsace, France , 1992 .

[42]  Norman C. Wardlaw,et al.  Pore-throat size correlation from capillary pressure curves , 1987 .

[43]  B. Goffé,et al.  Zeolitization of basalts in subaqueous freshwater settings: Field observations and experimental study , 1993 .

[44]  Colin F. Williams,et al.  Characterization of rock thermal conductivity by high-resolution optical scanning , 1999 .

[45]  B. Goffé,et al.  Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps , 1987 .

[46]  Ladislaus Rybach,et al.  On the thermal conductivity of low-porosity crystalline rocks , 1984 .

[47]  A. Meunier,et al.  Fractal analysis of fractures applied to Soultz-sous-Forets hot dry rock geothermal program , 1993 .

[48]  M. Lespinasse,et al.  Evolution of crack permeability during fluid–rock interaction. Example of the Brézouard granite (Vosges, France) , 2001 .

[49]  A. Clément,et al.  Modeling mineral/solution interactions: the thermodynamic and kinetic code KINDISP , 1994 .

[50]  B. Fritz Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques , 1981 .

[51]  C. Noguera,et al.  Simulation of the nucleation and growth of simple clay minerals in weathering processes: the NANOKIN code. , 2009 .

[52]  Emmanuel Jacquot,et al.  Modelisation thermodynamique et cinetique des reactions geochimiques entre fluides de bassin et socle cristallin : application au site experimental du programme europeen de recherche en geothermie profonde (soultz-sous-forets, bas-rhin, france) , 2000 .