Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities

Summary This study aimed to verify the validity of linear, power function and exponential models to estimate stand variables in Galician Atlantic forests of Pinus radiata D. Don using Light Detection and Ranging (LiDAR). These forests differ in structure and species composition from boreal forests, in which this methodology is fully developed. The models tested use LiDAR-derived canopy height and intensity distribution metrics as explanatory variables to predict the following stand attributes: mean height, dominant height, stand basal area, stand volume, stand crown biomass, stand stem biomass and stand aboveground biomass. Exponential models performed best in most cases, with goodness-offit statistics similar to those reported in the international literature for boreal forests. The coefficient of determination ranged from 0.44 (for stand crown biomass) to 0.87 (for dominant height), and the root mean square error/mean·100 ranged from 8.2 per cent (for dominant height) to 31.6 per cent (for stand stem biomass). Model precision did not essentially vary after reducing 94 per cent of the original point cloud, i.e. when laser pulse density was reduced from 8 pulses m 22 to only 0.5 pulses m 22 .

[1]  Norbert Pfeifer,et al.  Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain☆ , 2007 .

[2]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[3]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[4]  P. Litkey,et al.  Algorithms and methods of airborne laser-scanning for forest measurements , 2004 .

[5]  D. A. Crouse,et al.  Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM , 2006 .

[6]  William Kruskal,et al.  A Nonparametric test for the Several Sample Problem , 1952 .

[7]  Nicholas C. Coops,et al.  Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .

[8]  Lene Theil Skovgaard,et al.  Applied regression analysis. 3rd edn. N. R. Draper and H. Smith, Wiley, New York, 1998. No. of pages: xvii+706. Price: £45. ISBN 0‐471‐17082‐8 , 2000 .

[9]  George Vosselman,et al.  Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds , 2004 .

[10]  J. Rosette,et al.  Variability of LiDAR volume prediction models for productivity assessment of radiata pine plantations in South Australia , 2008 .

[11]  Gary W. Kamerman,et al.  Laser Radar Technology and Applications XII , 1997 .

[12]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[13]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[14]  Korhonen Lauri,et al.  The use of airborne laser scanning to estimate sawlog volumes , 2008 .

[15]  Eduardo González-Ferreiro,et al.  Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .

[16]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[17]  R. Hirsch Validation samples. , 1991, Biometrics.

[18]  Zhenyu Zhang,et al.  LIDAR data reduction for efficient and high quality DEM generation , 2008 .

[19]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[20]  Nicholas C. Coops,et al.  Simulation study for finding optimal lidar acquisition parameters for forest height retrieval , 2005 .

[21]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[22]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[23]  U. Diéguez-Aranda,et al.  Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA , 2007, Annals of Forest Science.

[24]  Michael E. Hodgson,et al.  Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation , 2007 .

[25]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[26]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[27]  K. Rennolls,et al.  Timber Management-A Quantitative Approach. , 1984 .

[28]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[29]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[30]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[31]  The influence of post-spacing density of DEMS derived from LIDAR on flood modeling , 2004 .

[32]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[33]  Steen Magnussen,et al.  Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.

[34]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[35]  M. Kimberley,et al.  ESTIMATION OF CARBON STOCKS IN NEW ZEALAND PLANTED FORESTS USING AIRBORNE SCANNING LIDAR , 2007 .

[36]  J. Hyyppä,et al.  Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .

[37]  Ra Musk,et al.  Calibrating LiDAR derived canopy metrics to account for data aquisition parameters and forest condition in Radiata pine plantations , 2007 .

[38]  A. Kozak,et al.  Does cross validation provide additional information in the evaluation of regression models , 2003 .

[39]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[40]  Johan E. S. Fransson,et al.  Effects on estimation accuracy of forest variables using different pulse density of laser data , 2007 .

[41]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[42]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[43]  M. B. Wilk,et al.  Approximations for the Null Distribution of the W Statistic , 1968 .

[44]  R. Chris Olsen,et al.  Effects of lidar point density on bare earth extraction and DEM creation , 2009, Defense + Commercial Sensing.

[45]  Dafydd Gibbon,et al.  1 User’s guide , 1998 .

[46]  Linear Least-Squares Interpolation , 2008 .

[47]  Gottfried Mandlburger,et al.  Local accuracy measures for digital terrain models , 2006 .

[48]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[49]  Mattias Magnusson,et al.  Evaluation of remote sensing techniques for estimation of forest variables at stand level , 2006 .

[50]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[51]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[52]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[53]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[54]  Daniel Peña Sánchez de Rivera Regresión y diseño de experimentos , 2002 .

[55]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[56]  R. H. Myers Classical and modern regression with applications , 1986 .

[57]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[58]  E. Næsset,et al.  ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .

[59]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[60]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[61]  Markus Hollaus,et al.  Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).

[62]  W. Wagner,et al.  3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .

[63]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[64]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[65]  David A. Belsley,et al.  Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1991 .

[66]  Alex C. Lee,et al.  A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests , 2007 .