Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities
暂无分享,去创建一个
Eduardo González-Ferreiro | David Miranda | Ulises Diéguez-Aranda | E. González-Ferreiro | D. Miranda | U. Diéguez-Aranda
[1] Norbert Pfeifer,et al. Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain☆ , 2007 .
[2] Ian Lewis,et al. Proceedings of the SPIE , 2012 .
[3] David J. Sheskin,et al. Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .
[4] P. Litkey,et al. Algorithms and methods of airborne laser-scanning for forest measurements , 2004 .
[5] D. A. Crouse,et al. Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM , 2006 .
[6] William Kruskal,et al. A Nonparametric test for the Several Sample Problem , 1952 .
[7] Nicholas C. Coops,et al. Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .
[8] Lene Theil Skovgaard,et al. Applied regression analysis. 3rd edn. N. R. Draper and H. Smith, Wiley, New York, 1998. No. of pages: xvii+706. Price: £45. ISBN 0‐471‐17082‐8 , 2000 .
[9] George Vosselman,et al. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds , 2004 .
[10] J. Rosette,et al. Variability of LiDAR volume prediction models for productivity assessment of radiata pine plantations in South Australia , 2008 .
[11] Gary W. Kamerman,et al. Laser Radar Technology and Applications XII , 1997 .
[12] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[13] W. Kruskal,et al. Use of Ranks in One-Criterion Variance Analysis , 1952 .
[14] Korhonen Lauri,et al. The use of airborne laser scanning to estimate sawlog volumes , 2008 .
[15] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[16] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[17] R. Hirsch. Validation samples. , 1991, Biometrics.
[18] Zhenyu Zhang,et al. LIDAR data reduction for efficient and high quality DEM generation , 2008 .
[19] E. Næsset. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .
[20] Nicholas C. Coops,et al. Simulation study for finding optimal lidar acquisition parameters for forest height retrieval , 2005 .
[21] M. F. Fuller,et al. Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .
[22] E. Næsset,et al. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .
[23] U. Diéguez-Aranda,et al. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA , 2007, Annals of Forest Science.
[24] Michael E. Hodgson,et al. Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation , 2007 .
[25] K. Lim,et al. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .
[26] W. Cohen,et al. Lidar remote sensing of above‐ground biomass in three biomes , 2002 .
[27] K. Rennolls,et al. Timber Management-A Quantitative Approach. , 1984 .
[28] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[29] K. Kraus,et al. Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .
[30] J. Holmgren,et al. Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.
[31] The influence of post-spacing density of DEMS derived from LIDAR on flood modeling , 2004 .
[32] E. Næsset,et al. Laser scanning of forest resources: the nordic experience , 2004 .
[33] Steen Magnussen,et al. Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.
[34] R. Dubayah,et al. Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.
[35] M. Kimberley,et al. ESTIMATION OF CARBON STOCKS IN NEW ZEALAND PLANTED FORESTS USING AIRBORNE SCANNING LIDAR , 2007 .
[36] J. Hyyppä,et al. Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .
[37] Ra Musk,et al. Calibrating LiDAR derived canopy metrics to account for data aquisition parameters and forest condition in Radiata pine plantations , 2007 .
[38] A. Kozak,et al. Does cross validation provide additional information in the evaluation of regression models , 2003 .
[39] E. Næsset. Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .
[40] Johan E. S. Fransson,et al. Effects on estimation accuracy of forest variables using different pulse density of laser data , 2007 .
[41] R. A. Groeneveld,et al. Practical Nonparametric Statistics (2nd ed). , 1981 .
[42] R. Hill,et al. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .
[43] M. B. Wilk,et al. Approximations for the Null Distribution of the W Statistic , 1968 .
[44] R. Chris Olsen,et al. Effects of lidar point density on bare earth extraction and DEM creation , 2009, Defense + Commercial Sensing.
[45] Dafydd Gibbon,et al. 1 User’s guide , 1998 .
[46] Linear Least-Squares Interpolation , 2008 .
[47] Gottfried Mandlburger,et al. Local accuracy measures for digital terrain models , 2006 .
[48] E. Næsset. Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .
[49] Mattias Magnusson,et al. Evaluation of remote sensing techniques for estimation of forest variables at stand level , 2006 .
[50] J. Reitberger,et al. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .
[51] I. Burke,et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .
[52] S. Ustin,et al. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .
[53] N. Draper,et al. Applied Regression Analysis , 1966 .
[54] Daniel Peña Sánchez de Rivera. Regresión y diseño de experimentos , 2002 .
[55] E. Næsset. Estimating timber volume of forest stands using airborne laser scanner data , 1997 .
[56] R. H. Myers. Classical and modern regression with applications , 1986 .
[57] N. Draper,et al. Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .
[58] E. Næsset,et al. ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .
[59] Åsa Persson,et al. Identifying species of individual trees using airborne laser scanner , 2004 .
[60] J. Hyyppä,et al. Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .
[61] Markus Hollaus,et al. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).
[62] W. Wagner,et al. 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .
[63] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[64] J. Means,et al. Predicting forest stand characteristics with airborne scanning lidar , 2000 .
[65] David A. Belsley,et al. Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1991 .
[66] Alex C. Lee,et al. A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests , 2007 .