Autosomal Recessive Cerebellar Ataxias With Elevated Alpha‐Fetoprotein: Uncommon Diseases, Common Biomarker

alpha‐Fetoprotein (AFP) is a biomarker of several autosomal recessive cerebellar ataxias (ARCAs), especially ataxia telangiectasia (AT) and ataxia with oculomotor apraxia (AOA) type 2 (AOA2). More recently, slightly elevated AFP has been reported in AOA1 and AOA4. Interestingly, AOA1, AOA2, AOA4, and AT are overlapping ARCAs characterized by oculomotor apraxia, with oculocephalic dissociation, choreo‐dystonia, and/or axonal sensorimotor neuropathy, in addition to cerebellar ataxia with cerebellar atrophy. The genetic backgrounds in these disorders play central roles in nuclear maintenance through DNA repair [ATM (AT), APTX (AOA1), or PNKP (AOA4)] or RNA termination [SETX (AOA2)]. Partially discriminating thresholds of AFP have been proposed as a way to distinguish between ARCAs with elevated AFP. In these entities, elevated AFP may be an epiphenomenon as a result of liver transcriptional dysregulation. AFP is a simple and reliable biomarker for the diagnosis of ARCA in performance and interpretation of next‐generation sequencing. Here, we evaluated clinical, laboratory, imaging, and molecular data of the group of ARCAs that share elevated AFP serum levels that have been described in the past two decades. © 2020 International Parkinson and Movement Disorder Society

[1]  D. Centonze,et al.  A Novel Homozygous Variant in the Fork-Head-Associated Domain of Polynucleotide Kinase Phosphatase in a Patient Affected by Late-Onset Ataxia With Oculomotor Apraxia Type 4 , 2020, Frontiers in Neurology.

[2]  D. Bulman,et al.  Ataxia Telangiectasia Diagnosed on Newborn Screening–Case Cohort of 5 Years' Experience , 2019, Front. Immunol..

[3]  M. Strupp,et al.  Cerebellar ataxias: an update. , 2019, Current opinion in neurology.

[4]  M. van der Burg,et al.  Early diagnosis of ataxia telangiectasia in the neonatal phase: a parents’ perspective , 2019, European Journal of Pediatrics.

[5]  P. Svenningsson,et al.  Variant ataxia-telangiectasia with prominent camptocormia. , 2019, Parkinsonism & related disorders.

[6]  D. Timmann,et al.  Speech treatment improves dysarthria in multisystemic ataxia: a rater-blinded, controlled pilot-study in ARSACS , 2019, Journal of Neurology.

[7]  L. Schöls,et al.  Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies , 2019, Neuron.

[8]  H. Samaratunga,et al.  Disruption of Spermatogenesis and Infertility in Ataxia with Oculomotor Apraxia Type 2 (AOA2) , 2019, The Cerebellum.

[9]  N. Drouot,et al.  Assessment of a Targeted Gene Panel for Identification of Genes Associated With Movement Disorders , 2018, JAMA neurology.

[10]  A. Lang,et al.  Ataxia‐telangiectasia: A review of movement disorders, clinical features, and genotype correlations , 2018, Movement disorders : official journal of the Movement Disorder Society.

[11]  A. Durr,et al.  The genetic nomenclature of recessive cerebellar ataxias , 2018, Movement disorders : official journal of the Movement Disorder Society.

[12]  Hans H. Jung,et al.  Clinical, Biomarker, and Molecular Delineations and Genotype-Phenotype Correlations of Ataxia With Oculomotor Apraxia Type 1 , 2018, JAMA neurology.

[13]  Ludger Schöls,et al.  Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia , 2018, Neurology.

[14]  J. Jankovic,et al.  Treatable inherited rare movement disorders , 2018, Movement disorders : official journal of the Movement Disorder Society.

[15]  M. Vidailhet,et al.  Comparing ataxias with oculomotor apraxia: a multimodal study of AOA1, AOA2 and AT focusing on video-oculography and alpha-fetoprotein , 2017, Scientific Reports.

[16]  M. Scheibye-Knudsen,et al.  Monogenic Diseases of DNA Repair , 2017, The New England journal of medicine.

[17]  M. Koenig,et al.  A recessive ataxia diagnosis algorithm for the next generation sequencing era , 2017, Annals of neurology.

[18]  B. P. Warrenburg,et al.  Ataxia‐telangiectasia: recommendations for multidisciplinary treatment , 2017, Developmental medicine and child neurology.

[19]  M. Koenig,et al.  Xeroderma pigmentosum complementation group F: A rare cause of cerebellar ataxia with chorea , 2017, Journal of the Neurological Sciences.

[20]  D. Zee,et al.  Novel PNKP mutation in siblings with ataxia-oculomotor apraxia type 4 , 2017, Journal of neurogenetics.

[21]  T. Foroud,et al.  Neurology Individualized Medicine: When to Use Next-Generation Sequencing Panels. , 2017, Mayo Clinic proceedings.

[22]  J. Glover,et al.  Neurological disorders associated with DNA strand-break processing enzymes , 2017, Mechanisms of Ageing and Development.

[23]  Keith W. Caldecott,et al.  XRCC1 Mutation is Associated with PARP1 Hyperactivation and Cerebellar Ataxia , 2016, Nature.

[24]  T. Crawford,et al.  Ataxia telangiectasia: a review , 2016, Orphanet Journal of Rare Diseases.

[25]  T. Pearson More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes , 2016, Tremor and other hyperkinetic movements.

[26]  I. O. Gjerde,et al.  PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema , 2016, The Cerebellum.

[27]  P. Svenningsson,et al.  Expanding the ataxia with oculomotor apraxia type 4 phenotype , 2016, Neurology: Genetics.

[28]  M. Gatei,et al.  ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor , 2015, Biomolecules.

[29]  F. Orzi,et al.  Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial , 2015, The Lancet Neurology.

[30]  J. Hardy,et al.  Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4 , 2015, American journal of human genetics.

[31]  N. Drouot,et al.  Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. , 2014, JAMA neurology.

[32]  M. Vidailhet,et al.  The pleiotropic movement disorders phenotype of adult ataxia-telangiectasia , 2014, Neurology.

[33]  R. Wevers,et al.  Alpha-fetoprotein, a fascinating protein and biomarker in neurology. , 2014, European journal of paediatric neurology.

[34]  G. Cummins,et al.  Myoclonic head jerks and extensor axial dystonia in the variant form of ataxia telangiectasia. , 2013, Parkinsonism & related disorders.

[35]  W. Meissner,et al.  Isolated generalized dystonia in biallelic missense mutations of the ATM gene , 2013, Movement disorders : official journal of the Movement Disorder Society.

[36]  Nicholas W Wood,et al.  Ataxia telangiectasia presenting as dopa-responsive cervical dystonia , 2013, Neurology.

[37]  C. Gellera,et al.  SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein , 2013, Orphanet Journal of Rare Diseases.

[38]  Y. Parfyonova,et al.  Alpha-fetoprotein contributes to THP-1 cell invasion and chemotaxis via protein kinase and Gi-protein-dependent pathways , 2013, Molecular and Cellular Biochemistry.

[39]  D. Pélisson,et al.  Saccades and Eye–Head Coordination in Ataxia with Oculomotor Apraxia Type 2 , 2013, The Cerebellum.

[40]  E. Santarnecchi,et al.  Clinical Course of Two Italian Siblings with Ataxia-Telangiectasia-Like Disorder , 2013, The Cerebellum.

[41]  A. Ludolph,et al.  The SETX missense variation spectrum as evaluated in patients with ALS4-like motor neuron diseases , 2013, neurogenetics.

[42]  M. Koenig,et al.  The autosomal recessive cerebellar ataxias. , 2012, The New England journal of medicine.

[43]  M. Weinfeld,et al.  Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair , 2011, Nucleic acids research.

[44]  A. Fischer,et al.  Immune deficiencies , infection , and systemic immune disorders Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype , 2011 .

[45]  D. Easton,et al.  Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours , 2011, British Journal of Cancer.

[46]  H. Mitsumoto,et al.  Senataxin mutations and amyotrophic lateral sclerosis , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[47]  B. Castellotti,et al.  Ataxia with oculomotor apraxia type1 (AOA1): novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients , 2011, neurogenetics.

[48]  Winfried Ilg,et al.  No increased risk of obstructive sleep apnea in Parkinson's disease , 2010, Movement disorders : official journal of the Movement Disorder Society.

[49]  C. Walsh,et al.  Mutations in PNKP cause microcephaly, seizures and defects in DNA repair , 2010, Nature Genetics.

[50]  N. Drouot,et al.  Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. , 2009, Brain : a journal of neurology.

[51]  M. Lavin,et al.  Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. , 2009, Human molecular genetics.

[52]  O. Ohara,et al.  Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. , 2009, The Journal of pediatrics.

[53]  W. F. Abdo,et al.  Clinical spectrum of ataxia-telangiectasia in adulthood , 2009, Neurology.

[54]  T. Dörk,et al.  Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. , 2009, American journal of human genetics.

[55]  H. C. Hartzell,et al.  Anoctamin/TMEM16 family members are Ca2+‐activated Cl− channels , 2009, The Journal of physiology.

[56]  Wei Liu,et al.  Ataxia with oculomotor apraxia. , 2008, Seminars in pediatric neurology.

[57]  A. Børresen-Dale,et al.  Alpha fetoprotein is increasing with age in ataxia-telangiectasia. , 2007, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[58]  J. Marescaux,et al.  Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH , 2007, Nature Neuroscience.

[59]  A. Durr,et al.  Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1 , 2007, Neurology.

[60]  J. Egly,et al.  When transcription and repair meet: a complex system. , 2006, Trends in genetics : TIG.

[61]  J. Lupski,et al.  Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1 , 2005, Nature.

[62]  R. Gatti,et al.  Ataxia-telangiectasia, an evolving phenotype. , 2004, DNA repair.

[63]  J. Schulz,et al.  Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2 , 2004, Nature Genetics.

[64]  S. Rivaud-Pechoux,et al.  Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. , 2003, Brain : a journal of neurology.

[65]  C. Pierrot-Deseilligny,et al.  Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. , 2003, Brain : a journal of neurology.

[66]  Y. Shiloh ATM and related protein kinases: safeguarding genome integrity , 2003, Nature Reviews Cancer.

[67]  J. Lupski,et al.  Mutation of TDP1, encoding a topoisomerase I–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy , 2002, Nature Genetics.

[68]  S. Tsuji,et al.  Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: The aprataxin gene mutations , 2002, Neurology.

[69]  T. Gibson,et al.  The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin , 2001, Nature Genetics.

[70]  T. Stankovic,et al.  The DNA Double-Strand Break Repair Gene hMRE11 Is Mutated in Individuals with an Ataxia-Telangiectasia-like Disorder , 1999, Cell.

[71]  S. Scherer,et al.  Molecular Cloning of the Human Gene, PNKP, Encoding a Polynucleotide Kinase 3′-Phosphatase and Evidence for Its Role in Repair of DNA Strand Breaks Caused by Oxidative Damage* , 1999, The Journal of Biological Chemistry.

[72]  M. Koenig,et al.  Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, γ‐globulin, and α‐fetoprotein , 1998 .

[73]  Matthias Platzer,et al.  Nibrin, a Novel DNA Double-Strand Break Repair Protein, Is Mutated in Nijmegen Breakage Syndrome , 1998, Cell.

[74]  M. Lovett,et al.  A single ataxia telangiectasia gene with a product similar to PI-3 kinase. , 1995, Science.

[75]  A. Taylor,et al.  Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. , 1992, The Quarterly journal of medicine.

[76]  M. Leppert,et al.  Localization of an ataxia-telangiectasia gene to chromosome 11q22–23 , 1988, Nature.

[77]  N. Nayak,et al.  The dynamics of alpha-fetoprotein and albumin synthesis in human and rat liver during normal ontogeny. , 1977, The American journal of pathology.

[78]  D. Cogan A type of congenital ocular motor apraxia presenting jerky head movements. , 1952, Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology.

[79]  A. Vighetto,et al.  A new MRI marker of ataxia with oculomotor apraxia. , 2019, European journal of radiology.

[80]  S. Pappatà,et al.  Nigrostriatal involvement in ataxia with oculomotor apraxia type 1 , 2007, Journal of Neurology.

[81]  M. Koenig,et al.  Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. , 1998, Annals of neurology.