Spectroscopy of Li+·Rg and Li+–Rg transport coefficients (Rg = He–Rn)
暂无分享,去创建一个
[1] W. Breckenridge,et al. Bonding in ground-state and excited-state A+.Rg van der Waals ions (A = atom, Rg = rare-gas atom): a model-potential analysis. , 2002, Chemical reviews.
[2] Edmond P. F. Lee,et al. High-quality interatomic potential for Li + ·He , 2001 .
[3] Edmond P. F. Lee,et al. The interaction energies of the Rg·NO+ cationic complexes: Rn·NO+ , 2000 .
[4] Edmond P. F. Lee,et al. Interaction Energy of the Radon-Water (Rn·H2O) Complex , 1999 .
[5] Edmond P. F. Lee,et al. Interatomic potentials for the Na+—Rg complexes (Rg = He, Ne and Ar) , 1999 .
[6] M. Elford,et al. Interaction Potential and Transport Coefficients for Li+ Ions in Helium , 1999 .
[7] Edmond P. F. Lee,et al. Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg = He, Ne, Ar, Kr, and Xe) , 1998 .
[8] Edmond P. F. Lee,et al. Interaction energies of the Na+·Rg complexes (Rg = He, Ne and Ar): Basis set considerations for Na+ , 1998 .
[9] M. Iizuka,et al. Mobilities of Li+ in Ne and in N2 and Na+ in SF6: Effect of inelastic energy loss , 1996 .
[10] T. L. Tan,et al. Transverse diffusion of Li+ ion swarms in Xe gas , 1995 .
[11] H. Stoll,et al. Ab initio energy‐adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities , 1995 .
[12] V. Staemmler,et al. An ab initio study of the chemical bond and the 129Xe NMR chemical shifts in M+ −Xe compounds, M = Li, Na, K, Cu, Ag , 1995 .
[13] J. Simons,et al. Potential energy curves of M(np 2P)⋅RG(2Π) excited states and M+⋅RG ground states (M=Li, Na; RG=He, Ne) , 1994 .
[14] Larry A. Viehland,et al. Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram—Charlier approach , 1994 .
[15] I. Røeggen,et al. The interatomic potential for the X1 Sigma state of ArLi , 1992 .
[16] I. Røeggen,et al. Mobility and diffusion of lithium ions in neon , 1992 .
[17] I. Røeggen,et al. The interatomic potential for the X 1Σ state of NeLi , 1992 .
[18] Michael Dolg,et al. Ab initio pseudopotentials for Hg through Rn , 1991 .
[19] E. A. Mason,et al. Interaction universality and scaling laws for interaction potentials between closed-shell atoms and ions , 1990 .
[20] C. Bauschlicher,et al. Theoretical study of metal noble‐gas positive ions , 1989 .
[21] H. Skullerud,et al. Measurements of transport coefficients for lithium ions in argon and helium ions in helium with a drift-tube mass spectrometer , 1988 .
[22] P. Larsen,et al. Transport coefficients and interaction potentials for lithium ions in helium and argon , 1988 .
[23] D. Linhjell,et al. Drift and longitudinal diffusion of lithium ions in helium , 1987 .
[24] P. Burton,et al. A CEPA2 investigation of the He-He and He-Li+ potential functions , 1986 .
[25] L. Viehland. Interaction potentials for Li+—rare-gas systems , 1983 .
[26] F. B. Holleman,et al. Longitudinal diffusion coefficients and test of the generalized Einstein relation for Tl+ ions in Kr and Xe, Li+ in Kr and Xe, and Cl− in N2 a) , 1983 .
[27] F. B. Holleman,et al. Mobilities of Tl+ ions in Kr and Xe, Li+ in Kr and Xe, and Cl− in N2 , 1983 .
[28] L. Viehland. Gaseous ion transport coefficients , 1982 .
[29] Y. Satoh,et al. Mobilities and longitudinal diffusion coefficients for Li + ions in Ar, Kr, and Xe at room temperature , 1982 .
[30] R. Olson,et al. Interaction potential for the X1Σ state of Li+ + Ar , 1979 .
[31] E. W. McDaniel,et al. The Li+–He interaction potential , 1977 .
[32] E. W. McDaniel,et al. Longitudinal diffusion coefficients of Li+ and Na+ ions in He, Ne, and Ar: Experimental test of the generalized Einstein relation , 1975 .
[33] E. W. McDaniel,et al. Mobilities of Li+ ions in He, Ne, and Ar and of Na+ ions in He, Ne, Ar, and CO2 , 1975 .
[34] J. Taylor,et al. Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .