Spectroscopy of Li+·Rg and Li+–Rg transport coefficients (Rg = He–Rn)

High-quality [CCSD(T), large basis sets] ab initio potential energy curves are calculated for the series of Li+·Rg species. These curves are employed to calculate spectroscopic parameters for these species, and are used to calculate transport properties for Li+ moving through a bath of the relevant inert gas. The transport results obtained are statistically compared to previous ones. The present potentials appear to be the best available for Li+·Ar, Li+·Kr and Li+·Xe and they rival the best ones for Li+·He and Li+·Ne. In the case of the Li+·Rn system, these are the first reported results.

[1]  W. Breckenridge,et al.  Bonding in ground-state and excited-state A+.Rg van der Waals ions (A = atom, Rg = rare-gas atom): a model-potential analysis. , 2002, Chemical reviews.

[2]  Edmond P. F. Lee,et al.  High-quality interatomic potential for Li + ·He , 2001 .

[3]  Edmond P. F. Lee,et al.  The interaction energies of the Rg·NO+ cationic complexes: Rn·NO+ , 2000 .

[4]  Edmond P. F. Lee,et al.  Interaction Energy of the Radon-Water (Rn·H2O) Complex , 1999 .

[5]  Edmond P. F. Lee,et al.  Interatomic potentials for the Na+—Rg complexes (Rg = He, Ne and Ar) , 1999 .

[6]  M. Elford,et al.  Interaction Potential and Transport Coefficients for Li+ Ions in Helium , 1999 .

[7]  Edmond P. F. Lee,et al.  Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg = He, Ne, Ar, Kr, and Xe) , 1998 .

[8]  Edmond P. F. Lee,et al.  Interaction energies of the Na+·Rg complexes (Rg = He, Ne and Ar): Basis set considerations for Na+ , 1998 .

[9]  M. Iizuka,et al.  Mobilities of Li+ in Ne and in N2 and Na+ in SF6: Effect of inelastic energy loss , 1996 .

[10]  T. L. Tan,et al.  Transverse diffusion of Li+ ion swarms in Xe gas , 1995 .

[11]  H. Stoll,et al.  Ab initio energy‐adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities , 1995 .

[12]  V. Staemmler,et al.  An ab initio study of the chemical bond and the 129Xe NMR chemical shifts in M+ −Xe compounds, M = Li, Na, K, Cu, Ag , 1995 .

[13]  J. Simons,et al.  Potential energy curves of M(np 2P)⋅RG(2Π) excited states and M+⋅RG ground states (M=Li, Na; RG=He, Ne) , 1994 .

[14]  Larry A. Viehland,et al.  Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram—Charlier approach , 1994 .

[15]  I. Røeggen,et al.  The interatomic potential for the X1 Sigma state of ArLi , 1992 .

[16]  I. Røeggen,et al.  Mobility and diffusion of lithium ions in neon , 1992 .

[17]  I. Røeggen,et al.  The interatomic potential for the X 1Σ state of NeLi , 1992 .

[18]  Michael Dolg,et al.  Ab initio pseudopotentials for Hg through Rn , 1991 .

[19]  E. A. Mason,et al.  Interaction universality and scaling laws for interaction potentials between closed-shell atoms and ions , 1990 .

[20]  C. Bauschlicher,et al.  Theoretical study of metal noble‐gas positive ions , 1989 .

[21]  H. Skullerud,et al.  Measurements of transport coefficients for lithium ions in argon and helium ions in helium with a drift-tube mass spectrometer , 1988 .

[22]  P. Larsen,et al.  Transport coefficients and interaction potentials for lithium ions in helium and argon , 1988 .

[23]  D. Linhjell,et al.  Drift and longitudinal diffusion of lithium ions in helium , 1987 .

[24]  P. Burton,et al.  A CEPA2 investigation of the He-He and He-Li+ potential functions , 1986 .

[25]  L. Viehland Interaction potentials for Li+—rare-gas systems , 1983 .

[26]  F. B. Holleman,et al.  Longitudinal diffusion coefficients and test of the generalized Einstein relation for Tl+ ions in Kr and Xe, Li+ in Kr and Xe, and Cl− in N2 a) , 1983 .

[27]  F. B. Holleman,et al.  Mobilities of Tl+ ions in Kr and Xe, Li+ in Kr and Xe, and Cl− in N2 , 1983 .

[28]  L. Viehland Gaseous ion transport coefficients , 1982 .

[29]  Y. Satoh,et al.  Mobilities and longitudinal diffusion coefficients for Li + ions in Ar, Kr, and Xe at room temperature , 1982 .

[30]  R. Olson,et al.  Interaction potential for the X1Σ state of Li+ + Ar , 1979 .

[31]  E. W. McDaniel,et al.  The Li+–He interaction potential , 1977 .

[32]  E. W. McDaniel,et al.  Longitudinal diffusion coefficients of Li+ and Na+ ions in He, Ne, and Ar: Experimental test of the generalized Einstein relation , 1975 .

[33]  E. W. McDaniel,et al.  Mobilities of Li+ ions in He, Ne, and Ar and of Na+ ions in He, Ne, Ar, and CO2 , 1975 .

[34]  J. Taylor,et al.  Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .