A novel development of bi-level reduced surrogate model to predict ductile fracture behaviors

[1]  Liang Meng,et al.  An objective meta-modeling approach for indentation-based material characterization , 2017 .

[2]  Piotr Breitkopf,et al.  Towards surrogate modeling of material microstructures through the processing variables , 2017, Appl. Math. Comput..

[3]  Liang Meng,et al.  An insight into the identifiability of material properties by instrumented indentation test using manifold approach based on P-h curve and imprint shape , 2017 .

[4]  T. Sapanathan,et al.  A novel artificial dual-phase microstructure generator based on topology optimization , 2016 .

[5]  P. Villon,et al.  Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications , 2016, Archives of Computational Methods in Engineering.

[6]  C. Dong,et al.  Failure analysis based on microvoids damage model for DP600 steel on in-situ tensile tests , 2016 .

[7]  B. Raghavan,et al.  Identification of material properties using indentation test and shape manifold learning approach , 2015 .

[8]  Youngsik Choi,et al.  A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture , 2015 .

[9]  Dirk Mohr,et al.  Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited , 2015 .

[10]  P. Breitkopf,et al.  Multiscale structural topology optimization with an approximate constitutive model for local material microstructure , 2015 .

[11]  P. Breitkopf,et al.  A reduced multiscale model for nonlinear structural topology optimization , 2014 .

[12]  A. H. van den Boogaard,et al.  Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties , 2014 .

[13]  Mohsen Eshraghi,et al.  Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel: A parametric study using thermomechanically-coupled finite element analysis , 2014 .

[14]  Weihong Zhang,et al.  Numerical material representation using proper orthogonal decomposition and diffuse approximation , 2013, Appl. Math. Comput..

[15]  D. Mohr,et al.  Predicting ductile fracture of low carbon steel sheets: Stress-based versus mixed stress/strain-based Mohr–Coulomb model , 2013 .

[16]  Michael Ortiz,et al.  A micromechanical model of distributed damage due to void growth in general materials and under general deformation histories , 2013 .

[17]  A. Ramazani,et al.  Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding , 2013 .

[18]  Tore Børvik,et al.  Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL , 2012 .

[19]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[20]  Dirk Mohr,et al.  On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles , 2011 .

[21]  Wolfgang Bleck,et al.  Modelling of damage and failure in multiphase high strength DP and TRIP steels , 2011 .

[22]  Dirk Mohr,et al.  Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals , 2010 .

[23]  T. Wierzbicki,et al.  A new model of metal plasticity and fracture with pressure and Lode dependence , 2008 .

[24]  P. Perzyna,et al.  Elasto‐plastic finite element analysis of shells with damage due to microvoids , 2006 .

[25]  P. Villon,et al.  Moving least squares response surface approximation: Formulation and metal forming applications , 2005 .

[26]  W. Bleck,et al.  Microstructure and Tensile Properties in Dual Phase and Trip Steels , 2004 .

[27]  Tomasz Wierzbicki,et al.  A Comparative Study on Various Ductile Crack Formation Criteria , 2004 .

[28]  E. Werner,et al.  An unexpected feature of the stress–strain diagram of dual-phase steel , 2002 .

[29]  P. Villon,et al.  An Introduction to Moving Least Squares Meshfree Methods , 2002 .

[30]  R. Haftka,et al.  Response surface approximations for structural optimization , 1996 .

[31]  R. Priestner,et al.  Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel , 1996, Journal of Materials Science.

[32]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[33]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[34]  G. Thomas,et al.  Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel , 1981 .

[35]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[36]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[37]  H. W. Swift Plastic instability under plane stress , 1952 .

[38]  Bernard Haasdonk,et al.  Surrogate modeling of multiscale models using kernel methods , 2015 .

[39]  Yuanli Bai,et al.  Application of extended Mohr–Coulomb criterion to ductile fracture , 2009 .

[40]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[41]  Nielen Stander,et al.  The successive response surface method applied to sheet-metal forming , 2001 .

[42]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .